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Abstract. In this article we will show how to find approximate solutions, using the numerical analysis differential 
placement method to the second order linear equations of the form !

!"
!#!

+ 𝐴(𝑥) !"
!#
+𝐵(𝑥)𝑦 = 𝑄(𝑥), 𝑦(0) = 𝑦(𝑎) = 0	, 

with the GeoGebra software, where "𝑎" is a positive number. The use of GeoGebra in the numerical analysis allows us 
to view the solutions and approximations of the differential equations, simultaneously, interactively, and dynamically. 

 

INTRODUCTION 
 

Sometimes it is not so easy to solve differential equations of the form 

!!"
!#!

+ 𝐴(𝑥) !"
!#
+ 𝐵(𝑥)𝑦 = 𝑄(𝑥), 𝑦(0) = 𝑦(𝑎) = 0, 

where "𝑎" is a non-zero positive number. The values that the expressions 𝐴(𝑥), 𝐵(𝑥) and 𝑄(𝑥) take can make 
trying to find the solution more difficult than previously thought. 

That is why we focus our attention on the free software GeoGebra, since it has tools to relate the graphical and 
algebraic aspects of the same mathematical object, see figures (1) and (2). 

In this paper, we will start using the method of placing order 2, given by 𝑈$ = 𝑥(𝑎𝑥)( 𝛼% + 𝛼$𝑥) to approximate 
the solution to the differential equation 

𝑑$𝑦
𝑑𝑥$ + 𝐴

(𝑥)
𝑑𝑦
𝑑𝑥 + 𝐵

(𝑥)𝑦 = 𝑄(𝑥), 𝑦(0) = 𝑦(𝑎) = 0 

where 𝐴	𝑎𝑛𝑑	𝐵	are real constants, and numbers 𝛼%	𝑦	𝛼$	are numbers to be determined. 

 

1. NUMERICAL DEVELOPMENT WITH GEOGEBRA 
 

To begin, we will see, through examples of GeoGebra, applications such as the absolute error of 
the formal solution versus the approximation given by 𝑈$ = 𝑥(𝑎𝑥)( 𝛼% + 𝛼$𝑥), for some values of “𝑎”. 

 



Example 1 

For: 

𝑑$𝑔
𝑑𝑥$ + 𝑔 = −𝑥, 0 ≤ 𝑥 ≤ 𝑎 

𝑔(0) = 𝑔(𝑎) = 0 

The solution is 𝑔 = 𝑎	𝑐𝑠𝑐(𝑎) sin(𝑥) − 𝑥 

Considering 𝑈$ = 𝑥(𝑎𝑥)( 𝛼% + 𝛼$𝑥), as the approximation polynomial, the error is given by: 

𝜀 =
𝑑$𝑈$
𝑑𝑥$ +𝑈$ + 𝑥 

 

 ⇨When replacing: 

		𝒅
𝟐𝑼𝟐
𝒅𝒙𝟐

= −2𝛼% + 2𝛼$𝑎 −6 𝛼$𝑥𝑦 𝑈$ = 𝑥(𝑎𝑥)( 𝛼% + 𝛼$𝑥) in  𝜺 and simplifying. 

If you have: 

𝛼%(−2 + 𝑎𝑥 − 𝑥$) +	𝛼$(2𝑎 − 6𝑥 + 𝑎𝑥$ − 𝑥)) + 𝑥 = 0 

with 𝑥 = *
+
 

𝛼% ?−2 +
3𝑎$

16 B + 𝛼$ ?
𝑎
2 +

3𝑎)

64 B +
𝑎
4 = 0 

and 𝑥 = *
$
 

𝛼% D−2 +
*!

+
E + 𝛼$ D−𝑎 +

*#

,
E + 	*

$
= 0 



So we form the following system: 

𝛼% D−2 +
)*!

%-
E + 𝛼$ D

*
$
+ )*#

-+
E + 	*

+
= 0 

𝛼% D−2 +
*!

+
E + 𝛼$ D−𝑎 +

*#

,
E + 	*

$
= 0 

whose solution is  α% =
.$*#/%$,*

)*$.%$0*!/1-,
  

                                  α$ =
.,*!/%$,

)*$.%$0*!/1-,
 

Therefore 𝑈$ = 𝑥(𝑎𝑥) D	 .$*#/%$,*
)*$.%$0*!/1-,

+ .,*!/%$,
)*$.%$0*!/1-,

	𝑥E 

The parameter “𝑎” assumes values between 0.1 and 3. Thus, for 𝑎 = 0.7, the highest absolute error is less than 
0.05, and the error varies depending on the values assumed by "𝑎" (figure 1). For 𝑎 ≠ 𝑛𝜋, 𝑛𝜖ℤ 

FIGURE 1. 

Example 2 

For: 

𝑑$𝑔
𝑑𝑥$ − 𝑔 = 𝑎, 0 ≤ 𝑥 ≤ 𝑎 



𝑔(0) = 𝑔(𝑎) = 0 

The parameter “𝑎” assumes values between 0.1 and 5. 

The solution is 

𝑔 = 𝑎𝑥 +
𝑎$

𝑒* − 1𝑒
# −

𝑎$

𝑒* − 1 

Considering		𝑈$ = 𝑥(𝑎𝑥)( 𝛼% + 𝛼$𝑥) as the approximation polynomial, the error is given by 

𝜀 =
𝑑$𝑈$
𝑑𝑥$ −

𝑑𝑈$
𝑑𝑥 − 𝑎 

⇒ When replacing: !
!2!
!#!

= −2𝛼% + 2𝛼$𝑎 − 6𝛼$𝑥𝑦
!2!
!#

= 𝑎𝛼% + 2𝛼$𝑎𝑥 − 2𝑥𝛼% − 3𝛼$𝑥$  

in 𝜀 , and simplifying. 

If you have: 

−2𝛼% + 𝛼$(2𝑎 − 6𝑥 − 2𝑎𝑥 + 3𝑥$) − 𝑎 = 0 

with  𝑥 = *
+
 

𝛼% D−2 −
𝑎
2E + 𝛼$ ?

𝑎
2 −

5𝑎)

16 B − 𝑎 = 0 

and 𝑥 = *
$
 

−2𝛼% + 𝛼$ ?−𝑎 −
𝑎$

4 B − 𝑎 = 0 

So we form the system 



𝛼% D−2 −
𝑎
2E + 𝛼$ ?

𝑎
2 −

5𝑎)

16 B − 𝑎 = 0 

−2𝛼% + 𝛼$ ?−𝑎 −
𝑎$

4 B − 𝑎 = 0 

whose solution is      𝛼% =
*!.$+*

$*!/-*/+,
 

𝛼$ =
−4𝑎

𝑎$ + 3𝑎 + 24 

Therefore 		𝑈$ = 𝑥(𝑎𝑥) D *!.$+*
$*!/-*/+,

+ .+*
*!/)*/$+

	𝑥E 

Thus, for 𝑎 = 0.5, the highest absolute error is less than 0.02, and the error varies depending on the values 
assumed by "𝑎" (figure 2). 

FIGURE 2. 

Example 3 

For: 

𝑑$𝑔
𝑑𝑥$ + 𝑔 = 1 −

𝑥
𝑎 ,							0 ≤ 𝑥 ≤ 𝑎 



𝑔(0) = 𝑔(𝑎) = 0 

The parameter “𝑎” assumes values between 0.1 and 2. 

The solution is: 

𝑔 =
−𝑥
𝑎 + 𝑐𝑜𝑡	(𝑎) sin(𝑥) − cos(𝑥) + 1 

Considering 		𝑈$ = 𝑥(𝑎𝑥)( 𝛼% + 𝛼$𝑥) the approximation polynomial, the error is given by 

𝜀 =
𝑑$𝑈$
𝑑𝑥$ +𝑈$ − 1 +

𝑥
𝑎 

⇨ When replacing: !
!2!
!#!

= −2𝛼%+ 2𝛼$𝑎 − 6𝛼$𝑥	 y 𝑈$ = 𝑥(𝑎𝑥)(	𝛼% + 𝛼$𝑥)	 in 𝜀, and simplifying. 

If you have: 

𝛼%(−2 + 𝑎𝑥 − 𝑥$) +	𝛼$(2𝑎 − 6𝑥 + 𝑎𝑥$ − 𝑥)) − 1 +
𝑥
𝑎 = 0 

with  𝑥 = *
+
 

𝛼% ?−2 +
3𝑎$

16 B + 𝛼$ ?
𝑎
2 +

3𝑎)

64 B −
3
4 = 0 

and 𝑥 = *
$
 

𝛼% ?−2 +
𝑎$

4 B + 𝛼$ ?−𝑎 +
𝑎)

8 B −	
1
2 = 0 

whose solution is 𝛼% =
%,-*!.$3-

+3*$.3-,*!/1-,
			 



𝛼$ =
−24𝑎$ + 128

45𝑎3 − 568𝑎) + 768𝑎 

                                   

Therefore 		𝑈$ = 𝑥(𝑎𝑥) D %,-*!.$3-
+3*$.3-,*!/1-,

+ .$+*!/%$,
+3*%.3-,*#/1-,*

	𝑥E 

The parameter “𝑎” assumes values between 0.1 and 3. 

Thus, for 𝑎 = 1.5, the highest absolute error is less than or equal to 0.4 and the error varies depending on the 
values assumed by "𝑎" (figure 3). For  𝑎 ≠ 𝑛𝜋, 𝑛 ∈ ℤ 

FIGURE 3. 

CONCLUSION 

We see that the use of GeoGebra in the numerical visualization of the absolute error in  differential 
equations, is of great help, and motivator to expand this same idea to other methods of numerical analysis. 
The dynamism of the GeoGebra with the students, makes the learning of the Collocation Method a place to  
escape the traditional and usual way. 
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