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Abstract. In this paper we will show the numerical solutions of some linear second order
differential equations through the finite difference methods with Lagrange interpolation and
finite elements, using GeoGebra software. These numerical solutions mediated by GeoGebra
are visualized with dynamic applets, which were built to analyze the absolute error produced by
the corresponding solution and the approximation and also as an interactive teaching support
material for the course of Numerical Calculation for Engineering and Science students .

1. Introduction
Many researchers currently recommend the use of educational and interactive software as stated
by the NCTM [2] which are cited in [1] and tell us that software is an alternative that
links technology with mathematical tools as an essential resource with the object of helping
students learn, make sense of mathematical ideas, reason mathematically and communicate
their mathematical thinking. According to Flores [4] cited in [3], the GeoGebra software has a
simple interface and a great variety of geometric and algebraic tools that allow a large number of
constructions to be achieved and achieved. Based on the previous statements it is that animated
Geogebra applets of numerical approximations of the solutions of the differential equations
of linear second order were made under the method of finite differences with interpolation
of Lagrange and finite elements, for the numerical calculation course of the University of
Antofagasta during the year 2019 and available at https://www.geogebra.org/m/n9qkpmst.

This work is a continuation and extension of the paper, “Resolving non-homogeneous linear
differential equations using the undetermined method coefficients and variation of parameters
by means of GeoGebra” [5]

2. Finite Difference and Finite Element Applets
Of the applets already built, two will be shown especially for the same differential equation, where
you can visualize the approximation of the solution with finite differences with interpolation of
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Lagrange and finite elements. It should be noted that both methods worked in the interval [0, a]
with h = a

3
Be

d2y

dx2
− y + f(x) = 0, y(0) = 0, y(a) = 0 (1)

Suppose that 0 = x0 < x1 < x2 < x3 = a represents a partition of the interval
[0, a], x1 = a

3 , x2 = 2a
3 .

where for finite differences

x0 = 0, y(0) = y0 = 0;x1 =
a

3
, y1 unknown;x2 =

2a

3
, y2, unknown;x3 = a, y(a) = y3 = 0

to get the value of y1 and y2 in terms of a we solve

y2 +
(
−2− a2

9

)
y1 + h2f(x1) = 0

y1 +
(
−2− a2

9

)
y2 + h2f(x2) = 0

Example 1
d2y

dx2
− y +

x

a
= 0, y(0) = y(a) = 0, a > 0

Whose solution is

y(x) =
ea−x − ea+x

e2a − 1
+
x

a
, x ∈ [0, a].

Be h = a
3 , with y0 = y3 = 0 y f(x) = x

a .
The value obtained for y1 and y2, in terms of a is

y1 =
a2(a2 + 36)

3(a4 + 36a2 + 243)

y2 =
a2(2a2 + 45)

3(a4 + 36a2 + 243)

Then, this determines the Lagrange polynomial for the points (0, 0), (a/3, y1), (2a/3, y2), (a, 0).
In the figure 1 a varies betwen 0.1 and 10, for example for a = 3 the Lagrange polynomial

with red is

p3(x) = −0.04167 + 0.0625x2 + 0.1875x,

and the absolute error is 0.02109 at x = 2.52265
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Figure 1. The solution is blue and the approximation with finite difference is red

Be − d2y
dx2 + y = f(x), y(0) = 0, y(a) = 0. Suppose that 0 = x0 < x1 < x2 < x3 = a represents

a partition of the interval [0, a], x1 = a
3 , x2 = 2a

3 .
An approximation for this finite element solution is given by
z(x) = αΦ1(x) + α2Φ2(x) with

Φ1(x) =


3x
a , x ∈ [0, a/3]

2− 3x
a , x ∈ [a/3, 2a/3]

0, x ∈ [2a/3, a]
Φ2(x) =


3x
a − 1, x ∈ [a/3, 2a/3]
3− 3x

a , x ∈ [2a/3, a]
0, x ∈ [0, a/3]

And the values α1 and α2 are obtained by solving the system(
2a
9 + 6

a

)
α1 +

(
a
18 −

3
a

)
α2 =

∫ a
0 f(x)Φ1(x)dx(

a
18 −

3
a

)
α1 +

(
2a
9 −

6
a

)
α2 =

∫ a
0 f(x)Φ2(x)dx

Example 2
d2y

dx2
− y = −x

a
, y(0) = y(a) = 0.

Whose solution is y(x) = ea−x−ea+x

e2a−1
+ x

a , x ∈ [0, a].

Be y0 = y3 = 0 and f(x) = −x
a .

The value obtainet α1 and α2, in terms of a is

α1 = 4a2(a2+108)
15a4+972a2+8748

α2 = 2a2(a2+270)
15a4+972a2+8748

In figure 2 it can be observed, for example, that a = 3 the error absolute obtained is 0.18888
for x = 2
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Figure 2. The solution is blue and the approximation with finite difference is red

3. Conclusion
We see that through these GeoGebra applets applied to the same differential equation, the finite
difference method with Lagrange interpolation is more advantageous than Finite element, Now
the next step is if this same advantage is maintained but with greater elements in the interval
partition left [0, a].

Also note that in both methods as a assumes large values, the absolute error tends to be
greater, so it is more advisable to work for adequate and small a values.
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