Sixth Order Linear Differential Equations Using GeoGebra Applets

Jorge Olivares, ${ }^{\text {a) }}$ Germain Pastén, ${ }^{\text {b) }}$ and Jonnathan Rodríguez ${ }^{\text {c }}$
Department of Mathematics, Faculty of Basic Sciences, University of Antofagasta, Av Angamos 601, Antofagasta, Chile.
${ }^{\text {a) }}$ Corresponding author: jorge.olivares@uantof.cl
b) germain.pasten@uantof.cl
c) jonnathan.rodriguez@uantof.cl

Abstract

. In Mathematics, the representations are understood as symbolic notations, graphics or verbal expressions, through which the most relevant concepts, procedures, characteristics and properties in this science are expressed. In this paper, in the context of Duval's Theory of Semiotic Representations, we use GeoGebra Applets as a teaching innovation tool that allows us to describe a form of conversion between algebraic and graphical semiotic representation registers of the solutions of sixth order linear differential equations, with the purpose of facilitating the process of its understanding and analysis.

INTRODUCTION

According to Duval [1], mathematics learning is a field of study appropriate to the analysis of important cognitive activities such as conceptualization, reasoning, problem-solving, and text comprehension.

In Mathematics, the representations are understood as symbolic notations, graphics or verbal expressions, through which the most relevant concepts, procedures, characteristics and properties in this science are expressed. In this context, Duval [2] indicates that these representations are grouped into different registers of representation according to their characteristics. In particular, the Theory of Semiotic Representation Registers developed by Duval explains the level of conceptualization based on the changes between the different registers of representation, requiring knowledge, treatment, and conversion of these registers, to be used in the different activities proposed. Thus, Duval indicates that the conceptual acquisition of a mathematical object is based on two of its strong characteristics: (i) the use of several registers of semiotic representation, (ii) the creation and development of new semiotic systems is a symbol of progress in knowledge.

For more information on Duval's Theory of Semiotic Representations see [3], [4], [5] and their respective references.

We will denote a linear differential equation of n-th order as

$$
\begin{equation*}
a_{n}(x) y^{(n)}(x)+a_{n-1}(x) y^{(n-1)}(x)+\ldots+a_{2}(x) y^{(2)}(x)+a_{1}(x) y^{(1)}(x)+a_{0}(x) y(x)=g(x) \tag{1}
\end{equation*}
$$

where $a_{n}(x), \ldots, a_{0}(x), g(x)$ are continuous functions on an interval I and for all $x \in I, a_{n}(x) \neq 0$.
Let $y_{1}(x), y_{2}(x), \ldots, y_{n}(x)$ be a fundamental set of solutions of the homogeneous differential equation of order n that follows from (1) on the interval I. Then the general solution of the equation on the interval I is given by

$$
\begin{equation*}
y_{G}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\ldots+c_{n} y_{n}(x) \tag{2}
\end{equation*}
$$

where c_{1}, \ldots, c_{n} are arbitrary constants. In our study, we will consider the particular case of $n=6$, that is, we will analyze the linear differential equation

$$
\begin{equation*}
a_{n}(x) y^{(6)}(x)+a_{n-1}(x) y^{(5)}(x)+\ldots+a_{2}(x) y^{(2)}(x)+a_{1}(x) y^{(1)}(x)+a_{0}(x) y(x)=g(x) \tag{3}
\end{equation*}
$$

where its general solution on I is

$$
\begin{equation*}
y_{G}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\ldots+c_{6} y_{6}(x) \tag{4}
\end{equation*}
$$

For more information on differential equations, see [6].

GeoGebra is a computer program to support the teaching and learning of Mathematics for different stages of education, especially in geometry, algebra, and statistics. This software allows its users to visualize abstract geometric objects quickly, accurately, and efficiently. For more information about GeoGebra as a teaching tool see [3], [7], [8] and their respective references.

The present work is within the framework of the Núcleo de Investigación en Docencia Universitaria (NIDU 2-001-22) of the Universidad de Antofagasta (Chile), called "Applets de Geogebra para la docencia en Matemática". Considering Duval's Theory of Semiotic Representations, researchers from this nucleus belonging to the Department of Mathematics of the Universidad de Antofagasta (Chile) have decided to use GeoGebra Applets as a teaching innovation in learning algebraic and graphical representations of the solutions of sixth order linear differential equations.

REPRESENTATIONS OF SOLUTIONS OF SIXTH ORDER LINEAR DIFFERENTIAL EQUATIONS USING GEOGEBRA APPLETS

In this section, we will show examples of the use of GeoGebra Applets as an innovative teaching tool to visualize simultaneously the analytical and geometric representations of solutions of different sixth order linear differential equations. These Applets are free of charge and are available in https://www.geogebra.org $/ \mathrm{m} / \mathrm{mtbacuyj}$.

In particular, in the following examples we will consider a parameter $a \in \mathbb{R}-\{0\}$. In the figures associated to each example, the differential equation shown in red, and the analytical solution and its corresponding graph in blue, where the sliders a and c_{i} with $i=1, \ldots, 6$ vary in the interval $[-5,5]$ in GeoGebra Applets.

Example 1 Let

$$
\begin{equation*}
y^{(6)}(x)-a^{4} y^{(2)}(x)=x \tag{5}
\end{equation*}
$$

where the general solution of the equation (5) is

$$
y_{G}(x)=-\frac{a^{2} c_{2} e^{-a x}+a^{2} c_{4} e^{a x}+a^{2} c_{3} \sin (a x)+a^{2} c_{1} \cos (a x)+\frac{x^{3}}{3}}{2 a^{4}}+c_{6} x+c_{5}
$$

where $a \in \mathbb{R}-\{0\}$ and the coefficients $c_{i} \in \mathbb{R}, i=1, \ldots, 6$.

FIGURE 1. A solution of the differential equation (5) when $a=0.8$

Example 2 Let

$$
\begin{equation*}
y^{(6)}(x)-2 a y^{(5)}(x)=0 \tag{6}
\end{equation*}
$$

where the general solution of the equation (6) is

$$
y_{G}(x)=\frac{c_{1} e^{2 a x}}{a^{5}}+c_{6} x^{4}+c_{5} x^{3}+c_{4} x^{2}+c_{3} x+c_{2}
$$

where $a \in \mathbb{R}-\{0\}$ and the coefficients $c_{i} \in \mathbb{R}, i=1, \ldots, 6$.

FIGURE 2. A solution of the differential equation (6) when $a=1.7$

Example 3 Let

$$
\begin{equation*}
y^{(6)}(x)+a^{4} y^{(4)}(x)=0 \tag{7}
\end{equation*}
$$

where the general solution of the equation (7) is

$$
y_{G}(x)=\frac{c_{2} \sin \left(a^{2} x\right)}{a^{8}}+\frac{c_{1} \cos \left(a^{2} x\right)}{a^{8}}+c_{6} x^{3}+c_{5} x^{2}+c_{4} x+c_{3}
$$

where $a \in \mathbb{R}-\{0\}$ and the coefficients $c_{i} \in \mathbb{R}, i=1, \ldots, 6$.

FIGURE 3. A solution of the differential equation (7) when $a=-1.8$

Example 4 Let

$$
\begin{equation*}
y^{(6)}(x)-36 y^{(4)}(x)=\cos (a x) \tag{8}
\end{equation*}
$$

where the general solution of the equation (8) is

$$
y_{G}(x)=-\frac{\cos (a x)}{a^{4}\left(a^{2}+36\right)}+c_{6} x^{3}+c_{5} x^{2}+c_{4} x+\frac{c_{1} e^{6 x}+c_{2} e^{-6 x}}{1296}+c_{3}
$$

where $a \in \mathbb{R}-\{0\}$ and the coefficients $c_{i} \in \mathbb{R}, i=1, \ldots, 6$.

FIGURE 4. A solution of the differential equation (8) when $a=5.5$

Example 5 Let

$$
\begin{equation*}
y^{(6)}(x)+a^{2} y^{(4)}(x)=x^{2} \tag{9}
\end{equation*}
$$

where the general solution of the equation (9) is

$$
y_{G}(x)=\frac{c_{2} \sin (a x)}{a^{4}}+\frac{c_{2} \cos (a x)}{a^{4}}-\frac{x^{4}}{12 a^{4}}+\frac{x^{6}}{360 a^{2}}+c_{6} x^{3}+c_{5} x^{2}+c_{4} x+c_{3}
$$

where $a \in \mathbb{R}-\{0\}$ and the coefficients $c_{i} \in \mathbb{R}, i=1, \ldots, 6$.

FIGURE 5. A solution of the differential equation (9) when $a=-0.6$

CONCLUSION

In mathematics, one way to analyze a phenomenon modeled by a differential equation is to study the general solution of the corresponding equation.

For a better understanding and analysis of the solutions, mathematical computer programs are playing a fundamental role. Thus, the use of GeoGebra Applets as a teaching innovation tool helps to strengthen the learning of students in the course of differential equations in the study, analysis, and understanding of the solutions of linear differential equations of sixth order, considering the registers of algebraic and graphical semiotic representations of these solutions. It should be noted that this tool is freely accessible and easy to understand, contributing directly to the academic training of students, who will be able to apply this knowledge to various problems in their areas of expertise.

ACKNOWLEDGMENTS

This work was funded by the Dirección de Gestión de la Investigación of the Universidad de Antofagasta, Chile.
We thank the Universidad de Antofagasta (Chile), especially to the área Gestión de Innovación de la Docencia for the Programa de Apoyo a la Investigación en Docencia Universitaria (PAIDU), to which the Núcleo de Investigación en Docencia Universitaria (NIDU 2-001-22) called "Applets de Geogebra para la docencia en Matemática" belongs, whose members are responsible for the research that derived in this publication. Thank you for your support, accompaniment, and training program aimed at promoting research in teaching and raising the academic indicators of this institution.

We thank the Universidad de Antofagasta for their support in the Proyecto de Innovación en Docencia (PID) 2022 "Fortalecimiento del aprendizaje significativo de las ecuaciones diferenciales con Applets de Geogebra en un libro digital". G. Pastén was supported by the Coloquio de Matemática CR-4486, Universidad de Antofagasta, Chile. J. Rodríguez was supported by MINEDUC-UA project, code ANT-1899 and Funded by the Initiation Program in Research - Universidad de Antofagasta, INI-19-06 and Programa Regional MATHAMSUD MATH2020003.

REFERENCES

1. R. Duval, "Semiosis y pensamiento humano. registros semióticos y aprendizajes intelectuales," (Traducción M. Vega Restrepo) Santiago de Cali : Universidad del Valle, Instituto de Educacion y Pedagogia, Grupo de Educacion Matematica (2004).
2. R. Duval, "Registres de représentation sémiotique et functionnement cognitif de la pensée," Annales de Didactique et de Sciences Cognitives $\mathbf{5}$ (1993).
3. A. Gruszycki, L. Oteiza, P. Maras, L. Gruszycki, and H. Ballés, "Geogebra y los sistemas de representación semióticos," (Acta Latinoamericana de Matemática Educativa, 2014) Chap. 5, pp. 2169-2176.
4. L. M. Oviedo, A. M. Kanashiro, M. Bnzaquen, and M. Gorrochategui, "Los registros semióticos de representación en matemática," Revista Aula Universitaria 13, 29-36 (2012).
5. M. G. Castro Rodríguez, M. D. González Quezada, S. Flores García, O. Ramírez Sandoval, M. D. Cruz Quiñones, and M. C. Fuentes Morales, "Registros de representación semiótica del concepto de función exponencial. parte i," Entreciencias: diálogos en la Sociedad del Conocimiento 5(3) (2017).
6. D. G. Zill, "Ecuaciones diferenciales con aplicaciones de modelado," (2009) Chap. 5, pp. 181-219.
7. R. Saha, A. Mohd Ayub, and R. Tarmizi, "The effects of geogebra on mathematics achievement: Enlightening coordinate geometry learning," Procedia - Social and Behavioral Sciences (International Conference on Mathematics Education Research 2010 (ICMER 2010)) 8, 686-693 (2010).
8. J. O. Funes and E. Valero, "Animations and interactive creations in linear differential equations of first order: The case of geogebra," Journal of Physics: Conference Series 1144(1), 012126 (2018).
