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ABSTRACT
Leaching is a hydrometallurgical activity widely used in mineral processing, both for metallic and non-metallic
ores, and in soil remediation. The dissolution of valuable species by heap leaching is strongly dependent on the
design and operating variables, so the study of the influence of these variables on recovery and their
optimization for the best performance are attractive tasks for the development of the mining industry. In
this work, a methodology is developed that enables the planning and design of leaching systems. This
methodology uses a proposed superstructure and a mathematical model to analyze the system behavior
and determine the optimal design and operating conditions. The model was generated with a Mixed Integer
Nonlinear Programming (MINLP) approach and solved by different solvers under GAMS® software (General
Algebraic Modelling System). The Spatial Branch-and-Bound (SBB) solver obtained the global optimum in the
shortest times. Based on a case of study for copper leaching, it is demonstrated that the procedure allows
achieving optimal design and operational conditions.
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1. Introduction

Heap leaching is a hydrometallurgical process that, due to its
economic and environmental advantages, is considered as a
standard treatment for the extraction of low-grade ores by the
mining industry (Cathles and Apps, 1975; Gálvez et al., 2012;
Ghorbani et al., 2016; Mousavi et al., 2006). Also, heap leaching
has been recently studied as a technology to pollutant removal in
the soil remediation (Hu et al., 2014). Heap leaching involves the
dissolution of a soluble compound from a stacked ore or soil by
using an external leachant, which extracts the valuable material
from the solid matrix. In the mining industry, cyanide solutions
are used for the processing of some precious metals as gold and
silver, sulphuric acid solutions for copper and water for non-
metallic ores as caliche (Trujillo et al., 2014; Valencia et al.,
2008). Although heap leaching has been practiced for centuries,
it is in the second half of the twentieth century where it begins to
have a significant relevance in industrial scale, especially for the
extraction of metals such as copper, gold, silver, zinc and caliche
(Bartlett, 1997; Habashi, 2005; Ordóñez et al., 2014).

Because of its importance, heap leaching has become in the
subject of multiple investigations that seek to predict the process
performance and improve it under different approaches. Some
mathematical models have been formulated to determine the
effect of input variables of heap leaching through simulations,
which allow to understand the phenomena in the process and
predict results. These models can demonstrate that the choice of
the input parameters may have a significant effect on the leach-
ing performance (Bartlett, 1992; Mellado and Cisternas, 2008;
Roman et al., 1974; Teles et al., 2013). Generally, the conducted

studies analyze the process optimization only from a technical
point of view, either through phenomenological approaches
(Bennett et al., 2012; Dixon and Hendrix, 1993a, 1993b,
McBride et al., 2012a, 2012b) that describe the system using
complex equations, or through analytical approaches that start
from simple constitutive equations (Bouffard and Dixon, 2009;
Mellado et al., 2012, 2011a, 2011b, 2009). However, few models
have performed a full system optimization (García et al., 2010;
McBride et al., 2014), by analyzing the leaching from a compre-
hensive perspective, i.e. taking into account the process design,
process planning, the operational variables, and their effect on
the economic benefits.

Mathematical programming can provide information that
allows planning the processing of minerals and facilitates the
evaluation and the decisionmaking, which is an essential tool for
monitoring and process design (Coderre and Dixon, 1999).
Regarding optimization and heap leaching operation, the tech-
nique is carried out until maximum recovery is obtained under
the best economic conditions (Padilla et al., 2008). Many studies
have proved the effect of other operations such as crushing,
agglomeration and ventilation on the recovery, also the influence
of flowmultistage through porous media (Bartlett, 1997; Cariaga
et al., 2005; Cross et al., 2006; de Andrade Lima, 2006; Mousavi
et al., 2006; Sheikhzadeh et al., 2005). The balance between the
recovery and the plant capacity has been analyzed from an
economic point of view, identifying that there is an optimum
in terms of design and planning (Padilla et al., 2008).

The problem of leaching system, defined by a set of heaps
was studied by Trujillo et al. (2014), who developed a meth-
odology through a superstructure that consists in a
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combination of all the possible streams among the unit pro-
cesses. The method was applied to the extraction of copper in
different heap leaching systems, giving results that allowed the
analysis and design of these systems. The results showed that
the system converged to an optimal solution using a Mixed
Integer Nonlinear Programming (MINLP) model. In that
case, the leaching time was considered as an operational
variable and the heap height as a design variable. Moreover,
the optimum design considered the maximum feasible height
and leaching times that make a balance between efficiency
(recovery) and capacity (number of leaching cycles in the
evaluated horizon). However, the superficial velocity of leach-
ing, or the irrigation rate, was not included in the analysis.
This is an important drawback because the irrigation rate
plays a major role in heap leaching. In fact, there is an optimal
irrigation profile as was demonstrated by Mellado et al.
(2011b).

In the process design, one of the critical aspects is the
handling of nonlinear parameters, such as: pressure, tempera-
ture, concentration, conversion and split fraction. In this
context, the use of linear models (MILP) is not always appro-
priate, since they have disadvantages associated to the need to
discretize conditions, which leads to increase the number of
binary terms. In this way, the application of nonlinear algo-
rithms (MINLP) has grown in the field of process engineer-
ing, because on one hand, overcomes the problems of
discretization and the other, extends the scope of the resolu-
tion through a continuous treatment of data (Grossmann,
1985; Kocis and Grossman, 1987). Although MINLP models
are more complex, they are more suitable for problems similar
to those posed in this study. The MINLP model presented by
Trujillo et al. (2014) experienced convergence problems, and
some scenarios did not converge at all.

The aim of this work is to develop a methodology that
enables the planning and design of leaching systems, includ-
ing irrigation rates, through a proposed superstructure and a
mathematical model to analyze the system behavior and
determine the optimal design and operating conditions. It
also seeks to compare different solvers, both global and
local, to identify those who are best suited to solve this model.

2. Proposed methodology

In this work, a set of alternatives for heap leaching systems is
proposed by a superstructure, which is represented by a
mathematical model. This model provides an approximation
of the system behavior and the optimal solution from an
economic point of view, determining the design (structure)
and operation (leaching time and irrigation rates) conditions.

Figure 1 shows the proposed superstructure, which represents
the set of alternative flows that are distributed through the
heaps. A heap leaching unit jp is represented by the structure
in Figure 1 that is based on the work of Trujillo et al. (2014). L
represents the mass flow and the subscripts i and j denote
processing units. The general set of units and symbols used
along the text are defined in the nomenclature section. A
mixer at the entrance of the processing units and a divider
at the output are considered. Heaps are arranged in series and
flows between them and to a solvent extraction unit are
allowed, but a stream output cannot enter to the same unit
again. The solvent extraction unit receives the solution that
comes from each heap its output feeds the heaps.

For one, two, and three heaps the number of alternatives of
stream structures are 1, 27, and 2,401, respectively. The meth-
odology finds the configuration that would lead to the optimal
solution and the maximum value of the target function. The
mathematical model designed in this study is proposed from a
framework that incorporates the design and operational para-
meters with intrinsic economic factors of the process
(Equation(1)). Here a brief description of the model is
given. The complete mathematical model is given in the
Appendix A. In general, the model corresponds to MINLP
model of the form,

Max f x; d; p; yð Þ
s:a:g x; d; p; yð Þ � 0

(1)

Where x represents operational variables such as concentra-
tion, mass flow rate, volumetric flow rate, and irrigation rate.
The symbol d represents design variables such as heap height,
p represents planning variables such as number of cycles and
cycle time. All x; d; p variables are continuous variables. On
the other hand, y represents binary variables that are used to
represent decisions for the selection of cycle time and selec-
tion of disjunction in the linearization of the heap recovery
model.

Models are needed to represent the copper recovery, Rjp;k

and acid consumption, Cþ
Hjp

in heap jp, Equation (2) and

Equation (3), respectively.

Rjp;k ¼ f z; us; r; tð Þ (2)
Cþ
Hjp

¼ f z; us; r; tð Þ (3)

Where z is the heap height, us is the superficial velocity of
irrigation, r is the particle radius, and t is the leaching time.
First, the analytical model proposed by Mellado et al. (2011a,
2009) is used that includes the kinetics at particle level and at
heap level. However, the Mellado model includes two expo-
nential expressions that introduce nonlinear equations to the
model (see Equations (A32) to (A37) of Appendix A). These

Figure 1. Generic superstructure of streams considered in one heap system. Linjp;k andL
out
jp;k represent the input and output mass of the k species in the heap jp.

Li;j;k andL j;i;k correspond to the flows before and after the virtual mixing and splitting units, respectively.
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nonlinear equations can produce difficulties in the optimiza-
tion solution of the problem. For that reason a second model
was included that is a linearization of the Mellado model (see
Equations (A38) to (A47)). This linearization is done through
disjunctive functions utilizing interval sections of time to
approximate the predicted recoveries obtained from the
Mellado model.

The mathematical model also includes mass and volumetric
balance in heaps, mixers, dividers, and solvent extraction unit (see
equations A1 to A5 and A22 to A26). The majority of these
equations are linear equations, but the relationship between
mass and volumetric flow rates is a bilinear expression (e.g.
Lx ¼ Q, where L; x;Q are mass flow rate, concentration and
volumetric flow rate, respectively). Bilinear expression is noncon-
vex nonlinear and therefore can produce multiple local optimal
solutions.

In a time horizon (H) several cycles of leaching (N) can be
achieved, for example if a heap is leached by 90 days, then four
cycles of leaching are performed in a time horizon of 360 days and
the cycle time (t) is 90 days. This is Nt ¼ H. However, if the
leaching is performed in two heaps operated in series simulta-
neously, the cycle time will be the large time of leaching heap one
and two. For the selection of cycle time the Big M method was
applied to the disjunctions that represent the selection of the cycle
time. These equations include binary variables, but are linear
expressions. However, the equation Nt ¼ H is bilinear. All these
equations can be considered as the planningmodel (see Equations
(A6) to (A12)).

For improving the optimization performance of solvers and to
reach logical solutions it is necessary to include lower and upper
bounds for the variables. For example, the cycle time cannot be
higher than the horizon time and copper recovery must be
between 0 and 1 (see Equations (A13) to (A21)).

In this study, the optimization task involves the minimiza-
tion of the operating costs and maximization of incomes to
reach the maximum possible profits. The incomes are repre-
sented by the total production of the valuable species and its
price. The costs are determined by the design, construction
and operation of each heap. The profits (U) result from the
subtraction of total incomes (I) minus total costs (C)
(Equation (4)).

Maximize U ¼ I � C (4)

Incomes represent a set of intrinsic variables such as pro-
duction (Pk), species price (PCk), number of cycles and post
leaching costs (Cpost�leac), expressed by:

I ¼ NPk PCk � Cpost�leac
� �

(5)

On the other hand, the costs include number of cycles,
total cost for each cycle per area, the variable cost per ton of
extracted mineral (Cvjp), mineral density and design variables
such as area and heap height (Equation(6)).

Cjp ¼ CTjp þ CVjp ρAzð Þ þ Cpre�leacjp ρAzð Þ (6)

Where Cjp represents the construction and operation costs of
heap. To determine the total cost of the process (C), the acid
price (PA) and the acid consumption of the heap jp (CAT ) are
included.

C ¼ N CATPA þ
X
jp

Cjp

 !
(7)

3. Results and discussion

3.1. Performance analysis of solvers

Both Mellado and disjunctive mathematical models are non-
convex MINLP, and therefore it is difficult to solve for global
optimum. For this reason, the performance of eight different
MINLP solvers was studied, which are: AlphaECP, BARON,
BONMIN, DICOPT, COUENNE, LINDOGlobal, OQNLP
and SBB. A brief description about these solvers appears in
Table 1. GAMS software was used for the optimization, and
the solvers were compared regarding their efficiency and
resolution time.

The Mellado and Disjunctive models were solved for sys-
tems comprised by one, two and three leaching heaps. In the
case of the disjunctive model, four (D4) and eight (D8) dis-
junctions were carried out to evaluate the effectiveness to use
different number of disjunctions. The effect of copper price
on the profits was evaluated in this study.

The efficiency was determined by evaluating the capability
of each solver to converge and to get to the optimum value. In
the case of the disjunctive model, for four disjunctions, cycle
time intervals of 40 days were obtained by the optimization
program, while for eight disjunctions intervals of 20 days were
reached. The parameters considered in the performance ana-
lysis of solvers are shown in Table 2.

For one heap system, the obtained solution by the different
MINLP solvers is almost the same, except AlphaECP and
OQNLP that showed non-convergence for both models
(Table 3). In general, as the number of heaps increases, the
convergence problems are larger. For two and three heap
systems some solvers have no convergence, or local solutions
were obtained. OQNLP worked well for some cases using the
Mellado model but not for the disjunctive one. On another
side, AlphaECP cannot solve the Mellado model, while
LINDOGlobal obtained local optimal for some cases. It is
important to note that some of the aspects that determine if
a solver can reach an optimal solution are the algorithms and
the nonlinearities processing techniques that it has, which can

Table 1. MINLP solvers used in this study.

Solver Algorithm

Type of
optimum
obtained

AlphaECP Extended-cutting-plane method based for
pseudo-convex problems.

Global

BARON Specialized branch-and-reduce deterministic
algorithms.

Global

BONMIN Branch-and-bound and outer-approximation
based.

Local

DICOPT MILP/NLP outer-approximation algorithm. Local
COUENNE Branch-and-bound and outer approximation

based for pseudo-convex problems.
Global

LINDOGlobal Branch-and-bound and outer approximation
based algorithm.

Global

OQNLP Multi-start heuristic algorithms. Local
SBB NLP based branch-and-bound algorithm. Local
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be: Branch and Bound, Outer Approximation, Generalized
Bender Decomposition and Extended Cutting Plane.

In this work, all the techniques are addressed by the
employed solvers and the differences obtained in their per-
formance depends on its formulation. According to the
results, the solvers that achieved global optimum values
were: BARON, BONMIN, COUENNE, and SBB. These sol-
vers have in common that they are based on the Branch and
Bound algorithm, which appears to be better for this type of
problem. Taking it into account, these four solvers were
considered for the subsequent study of the execution time.

The variables considered in the execution time analysis
were: copper price, ore grade, variable cost, and acid price.
These variables were analyzed in three levels, according to the
values shown in Table 4.

The execution time was measured in a computer with an
operative system of 64 bits, processor Intel® Core i5 3.10
GHz and RAM memory of 4 GB. The analysis was per-
formed summing the resolution times of each one of the
three levels for the four studied variables (copper and acid
price, variable cost and ore grade) for both disjunctive (4 and

8 disjunctions) and Mellado models. The results are given in
Table 5, which corresponds to the addition of the execution
times of the 12 cases indicated in Table 4.

The execution times were consistent between the run of the
4- and 8- disjunctions for the disjunctive model. As expected,
the number of heaps significantly increases the run times in a
non-lineal trend. For one heap, the disjunctive model solved
68 equations, 63 variables and 17 binary variables, while for
three heaps the model has 238 equations, 196 variables and 54
binary variables. On the other hand, in Mellado model for

Table 2. Operational parameters used in the performance analysis
of MINLP solvers.

Parameter Value

Mineral density, ρ (t/m3) 1.7
Ore grade, λk (%) 0.9
Time horizon, H (d) 360
Heap area, A (m2) 200,000
Heap height, z (m) 9.5
Post leaching cost, Cpost�leac (kUS$/t Cu) 0.17
Copper price, PCk (kUS$/t Cu) 7.7
Acid price, PA (kUS$/t H2SO4) 0.16
Variable cost, CVjp (kUS$/t ore) 0.0029

Table 3. Parameters used in the performance analysis of MINLP solvers. NC: Does not converge.

Solver Number of heaps

Profits (MUS$/y)

Copper price (kUS$/t)/Model

5.5 7.7 9.9

D4 D8 M D4 D8 M D4 D8 M

AlphaECP 1 NC 164 NC 344 NC NC NC 544 NC
2 350 NC NC 688 709 NC NC NC NC
3 NC NC NC NC NC NC NC NC NC

BARON 1 175 175 182 344 354 369 513 544 567
2 350 350 363 688 709 738 1026 1089 1133
3 525 525 545 1032 1063 1107 1540 1633 1700

BONMIN 1 175 175 182 344 354 369 513 544 567
2 350 350 363 688 709 738 1026 1089 1133
3 525 525 545 1032 1063 1107 1540 1633 1700

COUENNE 1 175 175 182 344 354 369 513 544 567
2 350 350 363 688 709 738 1026 1089 1133
3 525 525 545 1032 1063 1107 1540 1633 1700

DICOPT 1 175 175 182 344 354 369 513 544 567
2 248 192 363 460 511 738 672 748 1133
3 248 248 545 690 716 1107 1008 1061 1700

LINDOGlobal 1 175 175 182 344 354 369 513 544 567
2 350 NC 363 688 NC 738 1026 NC 1133
3 248 198 545 613 298 1107 1251 1121 1700

OQNLP 1 NC NC 182 NC NC 369 NC NC 567
2 NC NC NC NC NC 738 NC NC NC
3 NC NC 545 NC NC 1107 NC NC NC

SBB 1 175 175 182 344 354 369 513 544 567
2 350 350 363 688 709 738 1026 1089 1133
3 525 525 545 1032 1063 1107 1540 1633 1700

Table 4. Variables and levels used in the execution time analysis and study of cases.

Parameter Lower value Medium value Large value

Copper price, PCk (kUS$/t Cu) 5.5 7.7 9.9
Acid price, PA (kUS$/t acid) 0.110 0.162 0.210
Variable cost, CVjp (kUS$/t ore) 0.005 0.010 0.020
Ore grade, λk (%) 0.5 0.9 1.3

Table 5. Additive execution times for the 12 cases showed in Table 5, obtained
for the Disjunctive and Mellado models.

Solver Number of heaps

Execution time (s)

D4 D8 M

BARON 1 3.6 3.7 5.4
2 11.4 23.7 3951.7
3 9415 11494 120000

BONMIN 1 6.4 5.0 3.5
2 81.7 95.6 8.1
3 106.3 276.9 20.2

COUENNE 1 8.5 10.6 11.7
2 39.8 31.3 78.7
3 123 231 86271

SBB 1 3.0 2.9 2.3
2 4.3 3.9 1.7
3 4.2 5.3 1.6
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three heaps, 101 equations, 96 variables and 3 binary variables
were managed. Among the solvers that demonstrated conver-
gence and optimum global values, SBB was the fastest MINLP
solver, while BARON and COUENNE extremely increase the
execution times. Although SBB is a local solver, it was selected
to solve the following case studies based on its shown
performance.

3.2. Study of cases

Previous models, as those proposed by Padilla et al. (2008)
and Trujillo et al. (2014), analyzed the effect of design and
operating variables on the economic optimization of heap
leaching process. This study also analyses the optimization
of design and operating variables, but in this case, focusing on
the irrigation of leaching heaps and evaluating the economic
benefits. A range of different irrigation rates was evaluated,
between 0.008 and 0.012 m/h to determine the superficial
velocity that will be used in the study of cases. Both the
recovery to acid consumption are greater using larger super-
ficial velocities, but the increment of recovery before 100 days
is less significant than for acid consumption (Figure 2).
Therefore larger profits can be achieved with large initial
irrigation rates. According to this behavior, a lower and
upper bound equal to 5 and 12 L/h/m2 were defined for the
irrigation rate. The other parameters used in the simulation of
cases are listed in Table 2.

The effect of the variables: copper price, ore grade, variable
cost and acid price were evaluated at the level values listed in
Table 4, regarding the total recovery, cycle times and opti-
mum configuration for each heap system, which includes the
volumetric flow (m3/cycle) of each stream. All of them were
studied by using GAMS software and the SBB solver. This
solver showed the best performances according to the search
of the global optimum and execution time, discussed in the
previous section. From now on, the Disjunctive model will
employ eight disjunctions in the calculation process.

For the 2-heap system analyzed by the Mellado model, the
optimum configuration and volumetric flows were the same
for the copper price, acid price and variable cost, while for the

ore grade, the flow values were different. The same behavior
of the variables was observed for the 3-heap system. On the
other hand, the Disjunctive model for the 2-heap system
determined that copper price, variable cost, and acid price
have the same optimum configuration and flows, while ore
grade obtained another flowsheet. In the case of the 3-heap
system, the results of process configuration and flows were
different for each analyzed variable. The general configuration
for the 2- and 3-heap system obtained by the Mellado and
Disjunctive model is presented in Figure 3. The values of the
streams are given in each subsection below. In Figure 3 (and
Figure 5), H1, H2, H3, and SX symbolize the heap 1, 2, 3, and
the solvent extraction unit. The name of the streams repre-
sents the origin and destination, for example, stream H1-H3
goes from heap 1 to heap 3.

To avoid an excess of information in the paper, the details
about volumetric flows obtained from the analysis of para-
meters variable cost and acid price were put in the Appendix
B, but relevant comments about them are mentioned in the
corresponding subsection.

3.2.1. Copper price (PCk )
The copper price has a direct incidence on the income, and
for this analysis, 3 values were considered: 5.5, 7.7 and 9.9
kUS$/t. According to the simulations, for both models and all
heap systems, an increase in the copper price results in a
growth of the annual profits. Since the Disjunctive model is
an approximation of the Mellado analytical model, their esti-
mations are slightly less and the differences increase with the
number of heaps (Table 6).

On the other hand, recoveries and cycle times were not
affected by the variations of copper price; however, the total
recoveries and cycle times increase and decrease with the
number of heaps, respectively, as shown in Table 7.

The same optimum process configuration was reached by
the different copper prices for each heap system (Figure 3a
and Figure 3b). For the 2-heap system, the flow distribution
varies slightly between the Mellado and Disjunctive models
(Table 8). For 3-heap systems, the Mellado model obtained an

Figure 2. Simulated a) recovery and b) acid consumption at different irrigation rates along time by using Equations (A33) and (A37), respectively.
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optimum structure that reaches the same values for either
copper prices

The Disjunctive model exposed 3 different structures that
were specific for each copper price. In all of the cases com-
prising 3 heaps, the solution obtained from the first heap,
which is the least concentrated among the heap outlets, is
conduced to the last heap to concentrate the solution, and a
small fraction of the H1 PLS is directly sent to SX unit. In this
sense, H2 and H3 are the most important feeding streams to
the SX unit, independent of the copper price. At the extent
that the copper price increases, the inventory of intermediary

solutions also increases (apart from the H1-H3 flow that is
present in all cases), appearing the flows H2 to H3 and H3 to
H1. This condition is produced to achieve larger recoveries
that increase the incomes.

3.2.2. Variable cost (Cv)
The variable costs considered in the analysis were: 0.005,
0.010 and 0.020 kUS$/t, and are related to costs that vary in
proportion to the production, such as water and energy con-
sumption, ore transport and maintaining costs. The cycle
times and recoveries were the same than obtained in the
simulation of copper price (Table 7). As the variable costs
have direct incidence on the expenses, the profits are also
affected. As shown in Table 9, to the extent that increases
the amount of heaps, the benefits are greater, and the values

Table 6. Profits obtained under different copper prices. Results calculated by the
Disjunctive and Mellado models for different heap systems.

Copper price
(kUS$/t)

Profit (MUS$/year)

1-heap 2-heap 3-heap

D8 M D8 M D8 M

5.5 518 530 821 839 1267 1285
7.7 887 904 1399 1426 2129 2185
9.9 1257 1278 1977 2013 3008 3084

Figure 3. General structures of operations for the (a) 2-heap and (b) 3-heap systems obtained for the Disjunctive and Mellado models. H1, H2, H3, and SX denote the
heap 1, 2, 3, and the solvent extraction unit. The streams are named considering the origin and destination of the streams.

Table 7. Cycle times and recoveries calculated for different heap systems by the
Disjunctive and Mellado models. These results were also obtained by the simula-
tions of variable cost (Cv) and acid price (PA).

Number of heaps Model Cycle time (d) Total recovery (%)

1 D8 43.5 69.7
M 43.5 70.6

2 D8 30.5 76.5
M 30.1 76.7

3 D8 20.0 76.3
M 19.5 76.3

Table 8. Optimum volumetric flows obtained under different copper prices, for
2- and 3-heap systems by the Disjunctive and Mellado models.

Stream

Volumetric flow (105 m3/cycle)

2-heap 3-heap

D8 M D8 (PCk=5.5) D8 (PCk=7.7) D8 (PCk=9.9) M

H1-SX 7.5 7.7 2.5 3.3 2.3 2.5
H1-H3 8.8 8.3 9.3 8.7
H1-H2 10.1 9.6
H2-SX 17.5 17.3 11.3 10.2 11.5 11.2
H2-H3 1.3 -
H3-SX 11.3 11.5 11.2 11.2
H3-H1 0.3
SX-H1 17.5 17.3 11.3 11.5 11.2 11.2
SX-H2 7.5 7.7 11.3 11.5 11.5 11.2
SX-H3 2.5 2.0 2.3 2.5
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obtained by the Disjunctive model were slightly lower than
those calculated by the Mellado model.

The configuration and flow distribution for the 2-heap
system was identical as for the copper price analysis by both
models, and in the case of the 3-heap system, the solving of
Mellado model was equally the same than the previous ana-
lysis. However, the results of the simulations by the
Disjunctive model for the 3-heap system achieved slight dif-
ferences in the stream configuration, which was different for
each evaluated variable cost. The contribution of inventory of
solution to the SX unit from H3 are kept relatively constant
while increasing Cv, the flow from H1 becomes greater (about
4 times) and disappearing the volumetric flow of the stream
H2-SX. Thus, working with high variable costs, H2 operates
as intermediary heap to concentrate the solutions and condu-
cing them to H3. H2 does not exchange flows (input or out-
put) with the SX unit.

3.2.3. Acid price (PA)
The acid prices considered were: 0.110, 0.162 and 0.210 kUS
$/t. The use of sulphuric acid is closely related to the copper
mining, and its price will depend on the global demand for its
application in the hydrometallurgical processes. Hence this
variable was studied separately of the operating costs. The
cycle times and recoveries were the same than obtained in
the simulation of copper price and variable cost (Table 7). To
the extent that the number of heaps increases, also increase
the profits, although if the acid is purchased more expensively,
these profits decrease (Table 10).

The structure and flow distribution that resulted from the 2-
heap systemwas the same to that obtained in the copper price and
variable cost analysis by both models. Moreover, the simulation
reached by Mellado model for the 3-heap system was also the
same. All of them are listed in Table 8. Regarding the Disjunctive
model performance for the 3-heap system, the distribution of the
streams and their volumetric flows were slightly different from
ones obtained under different copper price scenarios. The feeding
of SX is practically dominated by the concentrated streams that
come from H2 and H3 heaps. Increasing the acid price results in
that a greater fraction of the pregnant solution of H1 is led to H3.
Independently of the acid price, H1 is basically leached with the
solution coming from the SX unit, trying to re-use as much as
possible acid and reduce its replenishing rate. The other streams
remained similar than ones obtained in the analysis of PCky Cv.

3.2.4. Ore grade
The optimization was performed considering ore grades of 0.5,
0.9, and 1.3%. Better economic benefits will be achieved if the
processed minerals have higher grades. In this case, the total

recovery levels are independent of the ore grade, but the profits
and cycle time are directly influenced by the copper composition
(Table 11). The cycle time decreases when more heaps are man-
aged, operating for a longer time the first heap(H1) and then
diminishing in the subsequent heaps. The variations of times are
proportional to the ore grade for systems of more than one heap.
For this case, the models select constant cycle times.

Due to the variation of recovery in each heap is very small
between themodels, and to simplify the presentation of the results,
Figure 4 shows only the values obtained by theMelladomodel, but
the deviation between models is less than 3%. The notation at the
base of bars corresponds to a specific heap of total heaps compos-
ing the system, e.g.: 1/2H represents the first heap of the 2-heap
system. The disjunctive model in all cases slightly underestimates
the results of theMelladomodel. In the sameway as cycle time, for
the 3-heap system, the copper recovery of H1 was the highest
while for the other heaps were lower. The recovery of each heap is
reduced since shorter cycle times were used in subsequent heaps.
In all the scenarios, global recoveries larger than 70% were
achieved with similar results between 2- and 3-heaps and slightly
less by the 1-heap system. The influence of the ore grade is mainly
reflected in the stream flow distribution whenmore than a heap is
operated.

Unlike the previous cases for the 2-heap system, where both
models achieved a unique structure with the same volumetric
flows, in this case, the volumetric flows were specific for each ore
grade scenario (Figure 5). In the same way, for the 3-heap system,
the models obtained specific structures with unequal flows for
each ore grade levels (Table 12). The calculation of the volumetric
flows appears to be strongly sensitive to the ore grade variations,
because this parameter affects the processing performance while
the other tested parameters (copper and acid price and variable
costs) are related to the economics of the process.

The stream H2-H1 was not chosen by any model. It may
be since the system determines that the solution can be con-
centrated more and brings the stream to a less washed heap,
i.e. H3.

Table 10. Profits obtained under different acid prices. Results calculated by the
Disjunctive and Mellado models for different heap systems.

1-heap 2-heap 3-heap

D8 M D8 M D8 M

Acid price (kUS$/t) Profit (MUS$/year)

0.110 930.7 946.9 1474.3 1501.2 2242.6 2298.7
0.162 887.4 903.8 1399.2 1425.8 2129.2 2184.5
0.210 847.4 863.9 1329.9 1356.2 2024.5 2079

Table 9. Profits obtained under different variable costs. Results calculated by the
Disjunctive and Mellado models for different heap systems.

Variable cost
(kUS$/t) Profit (MUS$/year)

1-heap 2-heap 3-heap

D8 M D8 M D8 M

0.005 994.4 1010.8 1551.9 1580.5 2361.8 2422.5
0.010 860.6 877.0 1361.1 1387.1 2071.1 2124.9
0.020 593.0 609.3 949.5 1005.5 1489.7 1578.2

Table 11. Cycle times and profits obtained under different ore grades. Results
calculated by the Disjunctive and Mellado models for different heap systems.

1-heap 2-heap 3-heap

D8 M D8 M D8 M

Ore grade (%) Cycle time (d)

0.5 43.5 43.5 31.2 32.0 20.3 22.1
0.9 43.5 43.5 30.5 30.1 20.0 19.5
1.3 43.5 43.5 30.2 29.8 20.0 19.2

Profit (MUS$/year)
0.5 288.0 296.8 450.2 462.9 691.3 704.6
0.9 887.4 903.8 1399.2 1425.8 2129.2 2184.5
1.3 1486.8 1510.7 2359 2399.2 3555.4 3689.2
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4. Conclusions

The developed methodology allowed to design and plan leaching
processes by a superstructure of heap systems and a set of equa-
tions that facilitate the prediction of recoveries, cycle and leaching
times, economic benefits and volumetric flows, among others. For
the resolution of the mathematical algorithms, it was determined
that the solvers BONMIN, BARON, COUENNE and SBB reach
the global optimum, but with different execution times, where
BARON was the most time-consuming solver, about 5000 times
more than SBB, which was the solver that required the least time.

Leaching times and recovery are affected by the ore grade,
the superficial velocity and the concentration of the input to
the SX unit. Faster recoveries are shown by heaps irrigated
with higher flows; however, an intensive irrigation results in
more diluted solutions that results in longer periods of time in
each cycle to obtain high recoveries. For systems comprised
by more than a heap, leaching time of each unit decreases,
longer operating in the first heap and decreasing consecu-
tively in the following heaps, so cycle times are shortened with
a larger number of heaps.

Table 12. Optimum volumetric flows obtained under different ore grades, for 2- and 3-heap systems by the Disjunctive and Mellado models.

Stream

Volumetric flow (105 m3/cycle)

2-heap 3-heap

D8
(λk=0.5)

D8
(λk=0.9)

D8
(λk=1.3)

M
(λk=0.5)

M
(λk=0.9)

M
(λk=1.3)

D8
(λk=0.5)

D8
(λk=0.9)

D8
(λk=1.3)

M
(λk=0.5)

M
(λk=0.9)

M
(λk=1.3)

H1-SX 7.0 7.5 7.7 7.7 7.7 7.9 1.6 3.3 3.8 2.3 2.5 2.9
H1-H3 10.1 8.3 7.8 10.4 8.7 8.2
H1-H2 10.9 10.1 9.7 10.8 9.6 9.3
H2-SX 18.0 17.5 17.4 17.4 17.3 17.1 11.7 10.2 11.5 11.2 11.2 11.1
H2-H3 1.3
H3-SX 11.7 11.5 9.7 11.5 11.2 11.1
H3-H1 1.8
SX-H1 18.0 17.5 17.4 18.4 17.3 17.1 11.7 11.5 9.7 12.7 11.2 11.1
SX-H2 7.0 7.5 7.7 6.6 7.7 7.9 11.7 11.5 11.5 11.1 11.2 11.1
SX-H3 1.6 2.0 3.8 11.5 2.5 2.9

Figure 4. Simulated recoveries by the Mellado model for different ore grades (0.5, 0.9, 1.3%) and heap systems comprised by one (1H), two (2H) and three (3H)
heaps. Each heap that composes the system is individualized (the number before the slash). Results of the Disjunctive model reached similar values.

Figure 5. General structure of the heap leaching system obtained for the ore grade analysis by the Disjunctive and Mellado model. H1, H2, H3, and SX denote the
heap 1, 2, 3, and the solvent extraction unit respectively. The streams are named considering the origin and destination of the streams.
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The variables: copper price, acid price, variable cost and
ore grade were studied to determine the influence on the
distribution of volumetric flows. The first three are para-
meters that affect the incomes and outcomes, but not the
operational management. On the other side, ore grade is
involved in the technical processing. Results show that the
process configuration is unaffected by the economic para-
meters for simple systems, while the ore grade changes the
distribution of volumetric flows of the streams.

In general, the solution obtained try to reach the maximum
concentration of copper previous to SX unit, for this, the
efforts of recycling flows are focused on the first heaps and
some possible streams were not chosen by both models. In all
the analyzed variables, the results for both models were very
similar, resulting in slightly higher values by the model
Mellado. It was demonstrated by both models, that as the
number of heaps increases, more metal is recovered, and
thus the incomes are significantly higher than for a single
heap system. Finally, this study validated the influence of the
heap height, leaching time, and irrigation rate (superficial
velocity) in the leaching process, under an optimization per-
formed from an economic perspective.

5. Nomenclature

5.1. Sets
J ¼ jð Þ= jð Þ; process unitf g

JP ¼ jpð Þ= jp 2 Jð Þ; heap leaching unitf g
SX ¼ sxð Þ= sx 2 Jð Þ; solvent extractionunitf g
K ¼ kð Þ=k 2 KÞ; leachable speciesf g
D ¼ dð Þ= d 2 Dð Þ; disjuntions for recovery and acid consumptionf g

5.2. Variables y parámetros

A heap area [m2]
ad,bd recovery constants for the Disjunctive model
acd,b

c
d acid consumption constants for the Disjunctive

model
C costs [MUS$]
CTjp

total cost[(kUS$)⁄(m2 cycle)]

CVjp
variable cost [(kUS$)⁄(t ore)]

C1
Hþ acid consumption at infinite time [kg/t]

CHþ
jp

acid consumption of heap jp [kg/t]

C0
Hþ acid consumption at the beginning [kg/t]

CAjp
acid consumption of heap jp [kg/cycle]

CAT total acid consumption [kg/cycle]
C pre�leacð Þjp

operational costs before leaching [(kUS$)⁄(t ore)]

Cpost�leac operational costs after leaching [(kUS$)⁄(t Cu)]
Djp;k linear availability of kspecies in the heap jp [(t

Cu)⁄m]
H planning time horizon [d]
I incomes[MUS$]
k1,k2 kinetic constants
Ll;m;k mass of the unit process l to m of the k species [t⁄

cycle]
Li;j;k mass of the unit process i to j of the k species [t⁄

cycle]

Linj;k
input mass of the unit process j of the k species [t⁄
cycle]

Loutj;k
output mass of the unit process j of the kspecies
[t⁄cycle]

Mjp;k mass of mineral loaded on heap jp of k species [t]
M constant of in the big M method
MWH2SO4 molecular weight of sulphuric acid [t⁄tmol]
MWk molecular weight of k species [t⁄tmol]
N number of cycles
Pk production of k species [t⁄cycle]
PCk

price of k species [kUS$/t]
PA price of acid [kUS$/t]
Qi volumetric flow of the process unit i [m3⁄cycle]
QIi;j volumetric flow of the process unit i to j [m3⁄

cycle]
Q0 volumetric flow at the SX unit outlet [m3⁄cycle]
Qrjp irrigation rate [m3⁄d]
Rjp;k recovery from heap jpof the k species [%]
Rjp;k;d recovery from heap jp of the k species in the

disjunctive model [%]
R1 recovery at infinite time [%]
t cycle time of the heap system [d]
tjp end time of leaching of heap jp [d]
usjp superficial velocity [cm⁄s]
U profits [MUS$]
x0;k concentration of the output stream from SX unit

of k species [t⁄m3]
xj;i;k concentration of the unit process jp to i of the k

species [t⁄m3]
xinj;k

concentration of the input stream of the unit
process j of the k species [t⁄m3]

xoutj;k
concentration of the output stream of the unit
process j of the k species [t⁄m3]

yjp binary variable of the cycle times
yd disjunctive binary variable
y2jp;d disjunctive binary variable of the analyzed heap

y3ip;jp selection of the disjunction interval of the ana-
lyzed heap

z heap height [m]

5.3. Greek letters

α, β, λ,ω recovery constants of the Mellado model
αH , βH acid consumption constants
ρ ore density [t⁄m3]
λk k species grade in the ore [%]

5.4. Superscripts

LO lowerbound
UP upperbound
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Appendix A Mathematical model

Mathematical model of the proposed methodology. The equations are
developed considering the Figure 1, which represents the set of alternative
flows that are distributed through the heaps. A heap leaching unit jp is
represented by the structure in Figure 1. L represents the mass flow and the
subscripts i and j denote processing units. The general set of units and
symbols used along the text are defined in the nomenclature section. A
mixer at the entrance of the processing units and a divider at the output are
considered. Heaps are arranged in series and flows between them and to a
solvent extraction unit are allowed, but a stream output cannot enter to the
same unit again. The solvent extraction unit receives the solution that
comes from each heap its output feeds the heaps.

In the heap unit jp, Equation(A1) shows the mass balance conducted
for the k species, depending on the mass flows in and out.
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Loutjp:k ¼ Linjp;k þMjp;k Rjp;k � Rjp�1;k
� �

"jp 2 JP (A1)

Where Loutjp;k and Linjp;krepresent the mass of output and input of the k
species in the heap jp, respectively, and Mjp;k refers to the mass amount
of loaded ore in the heap leaching units that is determined by Equation
(A2), where the ore grade (λk) density (ρ), the heap height (z) and heap
area (A) are considered.

Mjp;k ¼ λkρzA"jp;2 JP (A2)

On the other hand, Rjp;k, is the recovery of the k species, which is
given in terms of design and operating variables and used in Equations
(A32) and (A33). The term (Rjp;k � Rjp�1;k) is included in Equation(A1)
since heaps are operated in series. In the balance of equipment, Equation
(A3) shows the mass balance of the mixers and Equation(A4) the balance
of the dividers, depending on the corresponding flows. Linj;kis the mass

input to the j processing unit of the k species (t/cycle) and Loutj;k is the

mass output of the j processing unit of the k species.

Linj;k ¼
X
i 2 J
j�i

Li;j;k "j 2 J; k 2 K (A3)

Loutj;k ¼
X
i 2 J
j�i

Lj;i;k "j 2 J; k 2 K (A4)

For solvent extraction unit, a mass balance was performed according
to the kind of production value (Pk), given by the Equation(A5).

Pk ¼
X
sx2SX

Linsx;k � Loutsx;k (A5)

Where Linsx;k is the input mass that enters into the SX unit of the k species
and Loutsx;k corresponds to the output mass of the same unit. A time
horizon was defined as the period during which the process will be
evaluated, from which the number of cycles (N), or number of times
that the process is repeated on the time horizon, H (Equation(A6)).

Nt ¼ H (A6)

The cycle time is defined as the total amount of time required to
complete the process and is given by the following equation:

t ¼ max
j

tjp � tjp�1
� �

(A7)

To represent t as a disjunctive expression, it results:

_
jp 2 JP

yjp
t ¼ tjp � tjp�1

tjp � tjp�1>tip � tip�1 "ip 2 JP; ip�jp

2
4

3
5 (A8)

Where yjp is a binary variable that corresponds to the selection of cycle
time in days and tjp is the leaching time of the heap jp. The method of the
Big M was applied for the disjunctive expressions for cycle time (Biegler
et al., 1997). For this, a letter M was defined as a very large but finite
number, which is used as the coefficient of artificial variables in the
function.

tjp � tjp�1 � tip � tip�1
� ��M 1� yjp

� �
"jp 2 JP;"ip

2 JP;"ip�jp (A9)X
jp2JP

yjp ¼ 1 (A10)

t � tjp � tjp�1 þM 1� yjp
� �

"jp 2 JP (A11)

t � tjp � tjp�1 �M 1� yjp
� �

"jp 2 JP (A12)

In Equation (A10), yjp represents a single working range, and Equations
(A11) and (A12) correspond to lower and higher time cycle equations,
respectively. Note that these equations are activated when yjp is equal to
one. Other conditions regarding the operating parameters in function of

leaching time (tjp) that have to be fulfilled are determined by the
Equations from (A13) to (A21).

0< tjp< tUP "jp 2 JP (A13)

0< tjp � tjp�1 � tUP "jp 2 JP (A14)
H
tUP

<N<
H
tLO

(A15)

tLO < t< tUP (A16)

LLOj;i;k � Lj;i;k � LUPj;i;k "j; i 2 J; j�i (A17)

0<Rjp;k<R1 "j 2 J (A18)

zLO < z< zUP (A19)

QrLOjp <Qrjp<Qr
UP
jp (A20)

usLOjp <usjp<us
UP
jp (A21)

The irrigation rate Qrjp is determined by the relationship between the
volumetric flow in the unit jp (Qjp) and the cycle time, shown in
Equation(A22). Input and output parameters are determined in
Equations (A23) and (A24).

Qrjp ¼
Qjp

t
(A22)

Qi ¼
X
i 2 J
j�i

QIi;j "j 2 J (A23)

Qi ¼
X
i 2 J
j�i

QIj;i "j 2 J (A24)

In the above equations, Qi represents the volumetric flow of the
processing unit, which is the sum of the streams that flows from the
unit ito j. Note that Equations (A23) and (A24) assume that the density is
constant, and for this, the input and output volumetric flowrates are
equals.

In the case of a homogeneous heap that is uniformly irrigated, the
irrigation rate is closely related to the superficial velocity (usjp). In the
proposed model, the superficial velocity is included as operational vari-
able, which can be determined by Equation(A25).

usjp ¼
Qrjp
A

(A25)

Each stream is determined by the relationship between the flow and
concentration, given by:

Li;j;k ¼ xi;j;kQIi;j (A26)

Where xi;j;k is the concentration of k-species in the stream that runs from
the processing unit i to j and QIi;j is the volumetric flow from the
processing unit ito j. The inflows and outflows are determined in
Equations(A27) and (A28), where Lini;k and Louti;k are the mass flowrates
of the k species in the processing unit i for the input and output streams,
respectively. Both are obtained by multiplying the corresponding con-
centration of the volumetric flow with the processing unit i, as shown
below:

Lini;k ¼ xini;k � Qi (A27)

Louti;k ¼ xouti;k � Qi (A28)

The maximum flow for the k-species, LUPj;i;k, is determined by

LUPj;i;k ¼ xUPj;i;k � QUP
j;i (A29)

Where xUPj;i;k represents the maximum concentration of the k species of
the processing unit j to i and QUP

j;i is the maximum volumetric flow from
the unit jto i. It should be considered that the concentration in the outlet
stream xouti;k , shall be equal to the concentration of the stream of proces-
sing unit i, as follows:

190 I. F. HERNÁNDEZ ET AL.



xouti;k ¼ xi;j;k"jp 2 JP;"ip 2 JP;"ip�jp (A30)

In this work, the copper recovery will be calculated by two models: a)
an analytical model proposed by Mellado et al. (2011a, 2009), where the
recovery was analyzed in function of design and operating variables; b)
through disjunctive functions utilizing interval sections of time to
approximate the predicted recoveries obtained from the Mellado
model. This model is based on the constitutive equations in function of
design and operational variables (Equation(A31)), where z is the heap
height, us is the superficial velocity of irrigation, r is the particle radius,
andt is the leaching time.

Rjp;k ¼ f z; us; r; tð Þ "jp 2 JP (A31)

In this work, the heap height was firstly analyzed, through Equation
(A32), where R1 represents the recovery at infinite time and the coeffi-
cients α and βare adjustable recovery constants.

Rjp;k ¼ R1 1� e�α tjp�βzð Þ� �
"jp 2 JP; k 2 K (A32)

The effect of the irrigation on the leaching performance was also
studied, using the following expression (Equation(A33)), which considers
others recovery (λand ω) and kinetic constants (k1 and k2).

Rjp;k ¼ R1 1� λe�k1 usjptjp�ωð Þ � 1� λð Þe�k2 tjp� 1
usjp

ω

� �" #
"jp

2 JP; k 2 K

(A33)

The velocity at which the flows are moved will be optimized, comply-
ing the following restriction:

usjp �
tpjp
ω

(A34)

The parameter values used in Equations(A32) and (A33)are detailed
in Table A1.

For the calculation of the acid consumption byMelladomodel, the general
equation is defined in function of the design and operational variables:

Cþ
Hjp

¼ f z; us; r; tð Þ "jp 2 JP (A35)

When the effect of the heap height is studied the acid consumption is
determined by Equation(A36), meanwhile when the effect of the irriga-
tion rate is analyzed, Equation(A37) is used.

Cþ
Hjp

¼ C1
Hþ 1� e�αHþ tjp�βHþ zð Þ� �

þ C0
Hþ (A36)

Cþ
Hjp

¼ C1
Hþ 1� λHþe�k1Hþ usjptjp�ωð Þh i

þ C0
Hþ "jp 2 JP (A37)

C0
Hþ represents the initial acid consumption, C1

Hþ is the consumption at
the infinite time, i.e. the maximum quantity of acid that can be con-
sumed, αHþ , βHþ , λHþ and k1Hþ are acid consumption coefficients. The
values of these coefficients are listed in Table A2.

For the disjunctive model, the recovery and acid consumption is
expressed by:

_
d 2 D

yjp;d
Rjp;k ¼ ad þ bdtjp
Cþ
Hjp

¼ acd þ bcdtjp
z ¼ zd

usjp ¼ usjp;d
tLOd <tjp<tUPd

2
6666664

3
7777775
;"jp 2 JP; k 2 K (A38)

Where ad, bd, acd and bcd are constants used in the recovery and acid
consumption approximation and yd is a binary variable that represents
each disjunction. tLOd andtUPd are the lower and upper bound of leaching
time of each disjunction, and usjpd is the superficial velocity in each
disjunction. The convex hull method (Biegler et al., 1997) was used to
transform Equation(A38) in a set of linear equations, according to:

Rjp;k;d ¼ adyjp;d þ bdtjp;d "jp 2 JP; k 2 K (A39)

Rjp;k ¼
X
d

Rjp;k;d "jp 2 JP; k 2 K (A40)

Cþ
Hjp;d

¼ acdyjp;d þ bcdtjp;d "jp 2 JP; k 2 K (A41)

Cþ
Hjp

¼
X
d

Cþ
Hjp;d

yjp;d "jp 2 JP; k 2 K (A42)

tjp ¼
X
d

tjp;d "jp 2 JP (A43)

yjp;dt
LO
d <tjp;d<t

UP
d yjp;d "jp 2 JP; d 2 D (A44)

usjp ¼
X
d

usjpd yjp;d "jp 2 JP (A45)

z ¼
X
d

zdyjp;d (A46)

X
d

yjp;d ¼ 1 "jp 2 JP (A47)

The sulphuric acid constitutes a very important factor in the cost of
the copper leaching, for this reason, its consumption (Equation(A48)) is
included in the model due to it influences on the economic optimization
of the process.

CAjp ¼ Cþ
Hjp

� Cþ
Hjp�1

� �
ρAz

�MWH2SO4

X uk Rjp;k � Rjp�1;k
� �

MWk
Mjp;k;"j 2 J (A48)

Cþ
Hjp

represents the acid consumption in the heap jp, Cþ
Hjp�1

is the con-
sumption of the previous heap, MWH2SO4 is the molecular weight of acid,
uk is the stoichiometry reaction coefficient equals to 2, MWk is the
molecular weight of the k species and Mjp;k corresponds to the mass of
k species in the ore loaded in the heap jp. The total acid consumption is
the sum of the acid consumption of each heap, i.e.:

CAT ¼
X
jp

CAjp (A49)

Table A1. Parameters used by the Mellado analytical model
for the copper recovery calculation (Mellado et al., 2011b,
2009).

Parameter Value

Recovery at infinite time, R1 81.8
Recovery constant, α 0.02
Recovery constant, β 1
Recovery constant, λ 0.81
Recovery constant, ω 0.002
Kinetic constant, k1 141.4
Kinetic constant, k2 37.4

Table A2. Parameters used by the Mellado model for the
acid consumption calculation (Mellado et al., 2011b, 2009).

Parameter Value

Acid consumption at infinite time, C1
Hþ (kg/t) 71.0

Initial acid consumption, C0
Hþ (kg/t) 25

Acid consumption constant, αHþ 0.013
Acid consumption constant, βHþ 1
Acid consumption constant, λHþ 1
Kinetic constant, k1Hþ 33.7
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Appendix B

Optimum stream configurations and volumetric flows resulted by the
simulation of the Disjunctive and Mellado models for the analysis of
variable cost (Table B1) and acid price (Table B2).

Table B1. Optimum volumetric flows obtained under different variable costs, for
2- and 3-heap systems by the Disjunctive and Mellado models.

Stream

Volumetric flow (105 m3/cycle)

2-heap 3-heap

D8 M D8 (Cv=0.005) D8 (Cv=0.010) D8 (Cv=0.020) M

H1-SX 7.5 7.7 3.3 3.9 14.9 2.5
H1-H3 8.3 7.6 2.3 8.7
H1-H2 10.1 9.6 – – – –
H2-SX 17.5 17.3 10.2 11.5 – 11.2
H2-H3 1.3 – 7.2 –
H3-SX 11.5 9.6 10.1 11.2
H3-H1 – 1.9 – –
H3-H2 – – 7.2 –
SX-H1 17.5 17.3 11.5 9.6 17.3 11.2
SX-H2 7.5 7.7 11.5 11.5 – 11.2
SX-H3 2.0 3.9 7.7 2.5

Table B2. Optimum volumetric flows obtained under different acid prices, for 2-
and 3-heap systems by the Disjunctive and Mellado models.

Stream

Volumetric flow (105 m3/cycle)

2-heap 3-heap

D8 M D8 (PA=0.110) D8 (PA=0.162) D8 (PA=0.210) M

H1-SX 7.5 7.7 3.9 3.3 2.0 2.5
H1-H3 7.6 8.3 9.5 8.7
H1-H2 10.1 9.6 – – – –
H2-SX 17.5 17.3 11.5 10.2 11.5 11.2
H2-H3 – 1.3 – –
H3-SX 9.6 11.5 11.5 11.2
H3-H1 1.9 – – –
SX-H1 17.5 17.3 9.6 11.5 11.5 11.2
SX-H2 7.5 7.7 11.5 11.5 11.5 11.2
SX-H3 3.9 2.0 2.0 2.5
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