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a b s t r a c t

Antofagasta, Chile, has one of the most important deposits of saltpetre in the world, which is called cali-
che. These deposits are mainly composed of nitrate, halite, sodium anorthite, and quartz. Minor species
include anhydrite, glauberite, loeweite, calcite, polyhalite, probertite, and gypsum. Recently, several oper-
ations began to use heap leaching for the extraction of saltpetre. Modelling the heap leaching of caliche is
not straightforward because of the many minerals and their different dissolution rates. Moreover, caliche
may have a large fraction of soluble minerals, approximately 40%, which causes the heap to slump. In this
work, we present two models. The first, which is a phenomenological model, is an extension of the model
published by Valencia et al. (2008). The system is modelled as a column comprised of N small columns,
and in each of these small columns, the height of the solids varies with time when the soluble minerals
are dissolved. The liquid in each small column has the same composition (well-stirred reactor). The sec-
ond model, which is an analytical model, is an extension of that published by Mellado et al. (2009) for
low-grade minerals, such as copper and gold, which considers that the leaching phenomenon occurs
on different scales of size and time. However, in this work, the time scale at the particle level is based
on the Bruner and Tolloczko dissolution model. The objective of this work is to test the suitability of
the analytical model as a tool for use in optimisation, for which the model needs to be solved many times.
The phenomenological model was used to generate simulated experimental data. The results show that
the analytical model may be a useful tool in optimisation.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Caliche minerals, which are found in Northern Chile, are primar-
ily composed of nitrate (NaNO3), halite (NaCl), sodium anorthite
((Ca,Na)(SiAl)4O8), and quartz. Minor species include anhydrite,
glauberite, loeweite, calcite, polyhalite, probertite, and gypsum
(Valencia et al., 2008). Soluble minerals found in caliche are not well
identified. These soluble minerals are mixed with inert minerals,
such as quartz and other silicates. The proportion of inert minerals
is 50–60%. Caliche is an important raw material for obtaining so-
dium nitrate, potassium nitrate, sodium sulphate, and iodine
(Lauterbach and Ober, 1995).

Heap leaching is used widely for the leaching of metals such as
copper (Dixon and Hendrix, 1993; Casas et al., 1998; Thiel and Smith,
2004). In Chile, since 1990, heap leaching with water has been used
ll rights reserved.
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to leach caliche minerals. The leaching of piled minerals represents a
valid alternative for low-grade caliche due to excellent economic
and technological possibilities and good levels of recovery when
compared with the vat-leaching technology typically utilised for
high-grade caliche.

The leaching of caliche differs from the leaching of copper, zinc,
gold, and other metals. Regarding caliche, there are several soluble
species but few in metal minerals. Copper, zinc, and gold minerals
are leached by chemical reactions, however, caliche is dissolved.
The variation of heap height over time is significant for caliche but
not for metal ores.

There are several works related to the modelling of heap leach-
ing, including phenomenological models (Bouffard and Dixon,
2001; Cariaga et al., 2005; Cross et al., 2006; Mellado and Cisternas,
2008) and empirical and hybrid models (Mellado et al., 2009, 2011).
However, these works are applicable to poorly soluble minerals. To
date, there is only one published manuscript related to highly solu-
ble minerals (Valencia et al., 2008).

The objective of this work is to test the suitability of the analytical
model as a tool for use in optimisation, where the model needs to
be solved a very large number of times (hundreds of thousands).
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Nomenclature

A cross-sectional area of the modelled column (m2)
Cs solubility of soluble species (kg/m3)
Ci concentration in small column i (kg/m3)
D particle diameter (m)
Hheap heap height (m)
H initial height of the small columns (m)
hi height of column i (m)
k mass transfer coefficient (m/h)
kl dimensionless kinetics constant (–)
kh, ks dimensionless adjusted parameters in Eq. (13) (–)
N number of small columns (–)
Np number of particles in each small column (–)
Pe Peclet number (–)
q water flux through the column (m3/m2 h)
R initial particle radius (m)
Rt recovery at time t (–)
Rl recovery at generalised dimensionless time l (–)

R1l recovery at infinite generalised dimensionless time (–)
ri particle radius in small column i (m)
t time (h)
us superficial bulk flow velocity (m/h)
Vwi water volume in small column i (m3)
a fraction of soluble species (–)
e porosity of the column and heap (–)
ea air volume fraction (–)
ew water volume fraction (–)
u dimensionless parameter (–)
l generalised dimensionless time (–)
x dimensionless time delay (–)
q particle density (kg/m3)
h dimensionless column-scale time (–)
s dimensionless particle-scale time (–)
p, b, c adjustable constants in Eq. (14) (–)
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The phenomenological model is used to generate simulated experi-
mental data. The analytical model is fitted using a subset of this data
and is then used to predict the other data points.

2. Heap leaching models

In this section, we present two models. The first, which is a
phenomenological model, is an extension of the model published
by Valencia et al. (2008). The system is modelled as a column com-
prised of N small columns. In each of these small columns, the
height of the solid varies with time when the soluble minerals
are dissolved. The liquid in each small column has the same com-
position (well-stirred reactor). The second model, which is an
empirical knowledge-based model, is an extension of that pub-
lished by Mellado et al. (2009), which considers two time and size
kinetics scales and considers particle radius and heap height to be
time-dependent properties.

Modelling the heap leaching of caliche minerals is not trivial
due to factors such as (a) the caliche composition, which is a mix-
ture of many minerals that may have different dissolution rates
and (b) the large fraction of soluble minerals, which reaches values
of approximately 40%; therefore, the heap height will decrease
appreciably when the soluble minerals are dissolved.

The main soluble anionic chemical species in the caliche miner-
als are nitrate, chloride, sulphate, iodate, perchlorate, and tetrabo-
rate. The cationic species are sodium, potassium, magnesium, and
calcium. Due to the large fraction of soluble minerals, the heap col-
lapses during the leaching process; therefore, its height decreases
with time. A heap of caliche minerals is formed by rocks of differ-
ent sizes, from a few millimetres to hundreds of millimetres. It is
expected that, initially, the minerals at or near the particle surface
were solubilised. When a significant fraction of minerals has been
dissolved, it is expected that the inert materials that remain on the
particle surface were removed (e.g., by the collapse of the particle
surface). However, the removal of the inert material is not impor-
tant; due to the high content of soluble minerals in the caliche
minerals, it is expected that the inert material that remains on
the particle surface will have a small resistance to mass transport.

Another issue is the dissolution rate of the different soluble
minerals in the particle. Here, it is assumed that the minerals be-
neath the particle surface will be dissolved only when these min-
erals are directly exposed to the action of the leaching solution
at the particle surface. Therefore, mineral dissolution will be
controlled by those soluble minerals that are found in large con-
centrations. Minerals that are present in small amounts are dis-
solved following the dissolution of the major minerals. Minerals
that have a low dissolution rate may be separated from the particle
simultaneously with the inert materials and be dissolved later. At
present, this is not considered in the models.

To model the leaching of caliche minerals in heaps and to keep
the models sufficiently simple, several assumptions are needed.
These assumptions are listed below:

� The particles are spherical and are initially of the same size.
They are non-porous.
� The soluble minerals and the inert material are homogeneously

distributed in the particle.
� Only the soluble minerals that are on the particle surface are

dissolved.
� The inert materials that remain at the particle surface after the

removal of the soluble minerals are separated from the particle
surface when the surface collapses.
� A one-dimensional system is used for the heap, i.e., it is

assumed that the horizontal dimensions of the heap are large.
Therefore, a column of caliche minerals in the centre of the heap
is modelled.

Other situations that may be modelled are straightforward; one
example is the leaching of caliche formed by particles of different
sizes that dissolve simultaneously.

2.1. Modelling the heap as well-stirred reactors in series

To take into account the variation of the heap height with time
in a simple way, the system is modelled as a column comprised of
N small columns (Fig. 1). In each of these small columns, the height
of the solid varies with time when the soluble minerals are dis-
solved. The liquid in each small column has the same composition
(well-stirred reactor). Therefore, in each small column (reactor), all
the particles have the same size, ri(t). The initial height of the heap
is divided into small columns of initial height H = Hheap/N, where
Hheap is the initial height of the heap, H is the initial height of each
small column, and N is the number of small columns or well-stir-
red reactors.

When a column is represented by a series of small well-stirred
reactors, the dispersive term is omitted in the equations describing



Fig. 1. An illustration showing the N small columns (or reactors).
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the processes occurring in the column or bed. The dispersion is ta-
ken into account by the number of reactors used to model the
heap. A system formed by a large number of small well-stirred
reactors is equivalent to having a high Peclet number, i.e., a small
dispersion. The opposite is true for a small number of well-stirred
reactors (large dispersion). The relationship between the number
of well-stirred reactors and the Peclet number is (Levenspiel, 1999)

Pe ¼ 2N: ð1Þ

This relationship is valid only for high Peclet numbers. For low
Peclet numbers, the relationship is approximated, e.g., for 5 reac-
tors (Pe = 10), the error is 10%; however, for 10 reactors (Pe = 20),
the error is only 5%.

Regarding the dissolution of the soluble minerals, it is assumed
that the particles initially have the same radius, R. The variation of
the particle radius with time is determined by the Bruner and Toll-
oczko dissolution model (Dokoumetzidis and Macheras, 2006), in
which the rate of dissolution is proportional to the product be-
tween the exposed surface area and the difference between the
solubility and the instantaneous concentration in reactor i at time
t. Therefore, the variation of the particle radius with time in reactor
i is

dri

dt
¼ � k

aq
ðCs � CiÞ ð2Þ

where ri [m] is the radius of the particle in reactor i, t [h] is the time,
k [m/h] is a mass transfer coefficient, q [kg/m3] is the particle den-
sity, and a is the fraction of the soluble species in the particle. Cs [kg/
m3] is the solubility of the soluble species, and Ci [kg/m3] is the con-
centration of the species in the leaching solution in reactor i at time
t. The term in parentheses represents the driving force for the mass
transport.

Here, the equations are written assuming that only one mineral
is dissolving from the caliche minerals or that all the soluble min-
erals are dissolving at the same rate. The material balance in the
well-stirred reactor i, with cross-sectional area A, is

dVwiCi

dt
¼ qAðCi�1 � CiÞ � Npð4pr2

i Þqa
dri

dt
ð3Þ

where Vwi [m3] is the volume of water in reactor i, q [m3/m2 h] is the
water flux through the column, Ci [kg/m3] is the concentration in
reactor i and Ci � 1 [kg/m3] is the concentration that flows into reac-
tor i from reactor i � 1. Np is the number of particles in each reactor.
All the reactors have the same number of particles because the reac-
tors have the same volume and the initial particle size is the same.

The small columns with height H are initially filled with caliche
minerals; however, due to the dissolution of the soluble minerals,
the column height decreases with time. It is assumed that the
porosity of the bed is constant, i.e., the ratio between the void vol-
ume and total volume is kept constant. The small column is as-
sumed to be water unsaturated with a water fraction of ew.
Therefore, the total porosity, e, comprises the air porosity, ea, and
the water content, ew. The number of particles in each reactor
may then be calculated as

Np ¼
AHð1� eÞ

4
3 pR3 : ð4Þ

Introducing the expression for the number of particles and the
water content into Eq. (3),

Aew
dhiCi

dt
¼ qAðCi�1 � CiÞ �

3HAð1� eÞ
R3 ðr2

i Þaq
dri

dt
ð5Þ

where hi is the height of reactor i at any time t. Taking the derivative
of the accumulation term and simplifying,

dCi

dt
¼ q

ew

1
hi
ðCi�1 � CiÞ �

3Haq
R3

ð1� eÞ
ew

r2
i

hi

� �
dri

dt
� Ci

hi

dhi

dt
: ð6Þ

A relationship between the height of the small column and the
radius of the particles in the column is required. This may be deter-
mined by performing a mass balance and assuming that the porosity
is constant. In this case, the column height is directly proportional to
the particle volume (r3

i ). Therefore, the following relationship may
be written:

hi ¼ H 1� a
ðR3 � r3

i Þ
R3

" #
¼ H 1� aþ a

ri

R

� �3
� �

: ð7Þ

Taking the derivative of Eq. (7) with respect to time, a relation-
ship between dri/dt and dhi/dt may be obtained

dhi

dt
¼ 3Ha

R3 r2
i

dri

dt

� �
¼ �3H

R3

k
q

r2
i ðCs � CiÞ: ð8Þ
2.2. Analytical model

In this section, an analytical model based on the first-order
kinetic equation is developed by following the approach used by
Mellado et al. (2009). In that work, for first-order kinetics, the dif-
ference between the recovery at infinite time, R1l , and the recovery
at dimensionless time l, Rl, was represented by

dðR1l � RlÞ
dl

¼ �klðR1l � RlÞ ð9Þ

where l is a generalised dimensionless time and kl is a dimension-
less kinetics constant in the same time scale. The subscript l is used
in all the variables and parameters to indicate that they represent
the kinetics at dimensionless time l. The initial condition for solv-
ing Eq. (9) is that at dimensionless time x, the variable Rl begins to
change (x is the dimensionless delay of Rl). The solution to this
problem is known to be

Rl ¼ R1l ð1� e�klðl�xÞÞ for l � x: ð10Þ

Considering that the leaching phenomenon occurs on different
scales of size and time and in relation to different phenomena that
participate in the leaching process, expressions similar to Eq. (9)
can be used to represent each of these phenomena. For the heap
leaching model in Dixon and Hendrix (1993), it is observed that
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Fig. 2. Concentration as a function of time for the central case. Reactor 1 is located
at the top of the column.
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Fig. 3. Particle diameter as a function of time for the central case. Reactor 1 is
located at the top of the column.
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the time scale at the heap level for the differential equations, after
the non-dimensionalisation procedure, is given in terms of the
dimensionless column scale time h, which is expressed as

h ¼ qt
ew Hheap

: ð11Þ

This simple observation leads to one kinetic constant for our
model in Eq. (10). Also, from the Bruner and Tolloczko dissolution
model, Eq. (2), the dimensionless time scale at the particle level is
given by

s ¼ Cskt
raq

: ð12Þ

It is assumed that with the inclusion of both scales in the heap
processing, i.e., both at the particle and the heap levels, the total
recovery will be the sum of the recoveries on both scales, or
Rt = Rs + Rh. Using Eq. (10) for each recovery, we obtain

Rt ¼ R1 1�ue
� khq

ewHheap
t�x�

ewhheap
q

� 	� �
� ð1�uÞe�

kskCs
raq t�x�

ewhheap
q

� 	� 	" #

ð13Þ

where u ¼ R1h =R1. u, kh, and ks are the adjustable parameters. hheap

is the heap height at any time. R1 is calculated using the following
equation (Mellado et al., 2011):

R1l ¼
p

Hb
heap þ c

: ð14Þ

Because the height and particle radius vary with time in Eq. (13),
an iterative process would be used for determining the recovery, Rt.
It should be noted that the height and radius are directly related to
the recovery as follows: hheap ¼ Hheapð1� aRtÞ and r ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Rt

3
p

.

3. Performed simulations

To show the characteristics and capabilities of the models, sim-
ulations were carried out for different parameter values. The values
used in these simulations are shown in Table 1. The parameters
chosen for these simulations are arbitrary.

3.1. Well-stirred reactors in series model

To show the properties of the model, simulations using the
parameter values for the central case (Table 1) were carried out.
Fig. 2 shows the concentration as a function of time at different loca-
tions in the column. For these parameters, it is observed that the
soluble salts in the first and fourth reactors are depleted after
approximately 130 and 180 days, respectively. For times longer than
210 days, soluble salts remain in the reactors in the lower part of the
column. The same pattern is observed for the particle diameter, as
shown in Fig. 3; particles disappear after approximately 130 days
Table 1
Values used in the simulations.

Entity Central value Interval

Heap height, m 10 8–12
Number of small columns 10 5–20
Particle diameter, m 0.15 0.10–0.20
Solid density, kg/m3 2000
Mass transfer coefficient, m/h 0.0001 0.00003–0.0003
Solubility, kg/m3 200 100–400
Column porosity 0.45
Water porosity in column 0.015
Fraction of soluble material 0.40
Water flux, m3/m2 h 0.005 0.004–0.006
in the first reactor. The trend observed for the outlet concentration
at different heights is similar to that reported in Valencia et al.
(2008) for the case of nitrate. The observed differences may be due
to the fact that in Valencia et al. (2008), the size of the particles in
the columns was approximately 1–2 cm, whereas the particle diam-
eter used in our simulations was 15 cm, which is closer to the sizes
used in industrial heaps. This difference in particle sizes implies that
the dissolution rate per bed volume is much lower in our case due to
the smaller contact area between the particles and the leaching
solution.

The relative recovery is shown in Fig. 4. For the entire column,
the simulated recovery is slightly greater than 90% after 210 days.
For the four reactors in the upper part of the column, the soluble
salts had been depleted by that time. The trend shown by the sim-
ulations was similar to that of the nitrate recovery in the leaching
experiments by Valencia et al. (2008), which used three small col-
umns in series. Good agreement is observed in the recovery and
outlet concentration obtained in those experiments and the simu-
lations performed using the phenomenological model. Several
experiments at the pilot scale under controlled conditions are



0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time, d

R
el

at
iv

e 
R

ec
ov

er
y

React 1
React 4
React 7
React 10

Fig. 4. Relative recovery of the soluble species as a function of time for the central
case. Reactor 1 is located at the top of the column.

50 E.D. Gálvez et al. / Minerals Engineering 33 (2012) 46–53
planned to validate the phenomenological model. The use of re-
sults from industrial heap leaching is also being considered.

The impact of the main parameters on the recovery of saltpetre
from caliche minerals was evaluated in a sensitivity study. The
parameters, its central values and the intervals used are shown
in Table 1. The impact of the mass transfer coefficient, solubility,
and number of reactors is shown in this section. The heap height,
particle size, and irrigation rate, which may be modified to opti-
mise the process, are shown and discussed in Section 3.2, where
the predictions of the two models are compared.
3.1.1. Impact of the mass transfer coefficient
The mass transfer coefficient was varied from 0.00003 to

0.0003 m/h. As expected, the simulations showed that the recovery
increased as the mass transfer coefficient increased (Fig. 5). How-
ever, mass transfer coefficients greater than 0.0003 m/h seemed
to have a lower effect on increasing the recovery. This is because
the recovery is controlled by salt solubility for high mass transfer
coefficients. For the highest mass transfer coefficient, 0.0003 m/h,
the salts were depleted after approximately 210 days; therefore,
the height of the heap was 6 m. For the lowest coefficient, more
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Fig. 5. Relative recovery of the soluble species as a function of time for different
mass transfer coefficients, k.
than 30% of the soluble salt remained in the column after 210 days,
and the height of the column was approximately 7.3 m.

3.1.2. Solubility
These simulations showed that solubility has a large impact on

the leaching process (Fig. 6). For example, when solubility was
increased by a factor of 2, the time for salt depletion was reduced
almost 50%. In addition, for the lowest solubility (100 kg/m3), after
210 days, only approximately half of the soluble salts have been
depleted. In simulations where these two parameters were varied
at the same time (data not shown), it was found that the behaviour
of the process was mainly determined by the combined effect of
these two parameters; solubility and mass transfer coefficient.

3.1.3. Dispersion – number of small reactors
As indicated in Section 2.1, the number of reactors used for

modelling the column determines the dispersion in the system.
According to Eq. (1), the use of 5, 10, and 20 reactors is approxi-
mately equivalent to Peclet numbers of 10, 20, and 40, respectively.
A Peclet number of 10 corresponds to a high dispersion, whereas a
Peclet number of 40 corresponds to a moderate dispersion. Peclet
numbers in this interval may be expected for systems formed by
large, non-uniform particles. The results showed that the recovery
is almost independent of the number of small reactors used for
modelling the column of caliche minerals (Fig. 7). It is known that
in systems where the reaction is important, the dispersion effect is
masked by the reaction. Therefore, the simulations may be carried
out by any numbers of small reactors between 5 and 20, and sim-
ilar results would be obtained.

3.2. Analytical model

The results of the analytical model were compared with the
results obtained with the phenomenological model by means of
the recovery of the soluble species. Table 1 shows the data used
in the simulations. The comparison was conducted using opera-
tional parameters, i.e., parameters that can be modified in an
industrial process. These parameters are, for example, heap height,
particle diameter, and irrigation rate. The other parameters (such
as mass transfer coefficient and solubility) are important; however,
they cannot be varied in an industrial process.

The analytical model’s main application is in process optimisa-
tion because the calculations may be performed quickly. Therefore,
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the computational effort is small, even for problems requiring a
large number of alternatives to be tested.

The properties of the analytical model were tested for different
situations. In particular, the predictive capability of the model was
tested when a small amount of information is used for fitting the
model. The testing procedure for the analytical model was as
follows: the phenomenological model is used to generate a set of
data, which is considered to be simulated experimental data from
an industrial leaching process. From these data (for example, the
recovery of the soluble species), six times were chosen: 42, 83,
125, 146, 167, and 188 days. The analytical model is fitted using
a subset of these data, and once the parameters of the analytical
model have been determined, the model is then used for predicting
the recovery for other cases. In these calculations, the recovery at
infinite time was assumed to be 1.0 because 100% of the soluble
species are recovered after a sufficiently long time in the phenom-
enological model.

For the analytical model, the parameters to be adjusted are as
follows: the constants kh and ks in the exponentials (which charac-
terise the reaction at the column and particle scales, respectively),
the dimensionless time delay, x, and the relative importance of the
column scale in the leaching process, u. Because the dimensionless
recovery is used for the comparisons, the error of the fitting pro-
cess is calculated as follows: the differences between the simulated
experimental data and the recovery calculated by the analytical
model are summed, which is then divided by the number of data
points.

First, the fitting capability of the analytical model was tested.
The simulated data was obtained using the phenomenological
model for various values for the heap height, particle diameter,
and irrigation rate, as shown in Table 2. The simulations were car-
ried out for the six times indicated above (42 data points in total).
The results, shown in Figs. 8–10, indicate that the fit of the analyt-
ical model to the simulated experimental data is good for the three
cases. The average error of the fitting process is 1.8%. The results
show that recovery decreases with height, and longer times are re-
quired to obtain a high recovery. Recovery also decreases with the
initial particle diameter due to the smaller surface area available
for mass transfer when the particle diameter increases. Finally,
recovery increased with irrigation rate.

The capability of interpolation (or extrapolation) using the ana-
lytical model is tested by fitting the model to a subset of data
points and then predicting the other data points. For interpolation,
the model is fitted using the data points obtained with the end-
points of the interval for each parameter, and the central value of
the parameter is predicted. For extrapolation, the data for the cen-
tral value and one endpoint value are used for fitting, and the other
endpoint value (Table 2) is predicted.

Several cases are considered in which the error is determined
only for the fitted data points (Error 1), for all 42 points including
the fitted points (Error 2), and for the interpolated or extrapolated
points (Error 3). These errors are shown in Table 2 for the different
calculated cases. In Case 1, the fitting is performed using the 12
points corresponding to the times of 42 and 167 days for the inter-
val endpoints (shown in Table 2) for height, particle diameter, and
irrigation rate. Then, in Case 2, the effect of height is considered,
the model is fitted using 12 points for the heights of 8 and 10 m,
and an extrapolation is carried out for 12 m. Similarity in Case 3,
the effect of particle diameter was studied, the model is fitted
using 12 points for the diameters of 0.10 and 0.20 m, and the
recoveries for a particle diameter of 0.15 m are interpolated.
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Fig. 11. Relative recovery of the soluble species as a function of time for different
heap heights. The lines are the analytical model. The simulated data for the heap
heights of 8 m (dots) and 10 m (+-markers) are fitted and extrapolated to 12 m
(x-markers).
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Fig. 10. Relative recovery of the soluble species as a function of time for different
irrigation rates. The lines are the analytical model, and the markers are the
simulated experimental data.
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Finally, the effect of irrigation rate is considered in Case 4, the
model is fitted using 12 points corresponding to the irrigation rates
of 0.004 and 0.005 m3/m2 h and an extrapolation is carried out for
the irrigation rate of 0.006 m3/m2 h.

Table 2 shows that the variations of the parameters evaluated in
each case are generally not significant. This indicates that Eq. (13)
is a good description of the heap leaching process. Almost the same
parameters are obtained in spite of the number of data points used
in the fitting process, which ranged from 12 to 42 points.

Using the values for the central case, the two time constants are
calculated:

For the column scale; Kh ¼
khq
ewh
¼ 2:8� 10�4 ½1=h�

For the particle scale; Ks ¼
kskCs

raq
¼ 4:6� 10�4 ½1=h�

Kh and Ks are the dimensional time constants, [1/h], for the col-
umn and particle scale respectively. These values indicate that the
time to reach a recovery of 0.632 (1–1/e) is approximately 160 days
and that the time for depleting 0.632 (1–1/e) of the particle is
Table 2
Errors for the different cases. Error 1: using the fitting data; Error 2: using all data points; Er
shown in parentheses.

Reference Case 1 Case 2

Case description
Variable studied All Time Heap he
Action Fitting Inter/extra Extrapo

Data points used in the fitting
Number of data point 42 12 12
Time (days) 42, 83, 125, 146, 167, 188 42, 167 42, 83,
Heap Heights (m) 8, 10, 12 8, 12 8, 10
Particle diameter (m) 0.10, 0.15, 0.20 0.10, 0.20 0.15
Irrigation rate (m3/m2 h) 0.004, 0.005, 0.006 0.004, 0.006 0.005

Results
kh 103 8.53 8.53 8.66
ks 1.39 1.44 1.55
x 9.09 7.34 5.85
u 0.80 0.82 0.62
Error 1 1.8 (42) 1.3 (12) 1.5 (12)
Error 2 1.8 (42) 2.0 (42) 2.4 (42)
Error 3 2.5 (24) 3.4 (6)
approximately 92 days. In Table 2, the dimensionless time delay
is presented, which may be converted to time in days using the
expression

tdelay ¼ x � ewh
q
¼ 11 days:

From the values of u, the term corresponding to the column
scale is found to be more dominant than the term corresponding
to the particle scale. Therefore, for the set of parameters used,
the variation in the particle diameter is not affecting the results.
However, for other sets of parameters, the particle scale in Eq.
(13) may be important.

The errors obtained in the fitting process are small. This indicates
that Eq. (13) describes the system well and that the model suitably
captures the recovery trends in spite of the variation of the param-
eters. However, the most important characteristic of the model is
that using a limited number of data points, reasonable predictions
for the recovery of other parameter values may be obtained. For
example, in case 4, the recovery data for two cases with irrigation
rates of 0.004 and 0.005 m3/m2 h were used in the fitting process
and the error was 1.5%. The largest error was obtained for the
ror 3: using the extrapolated/interpolated data in the category. The number of points is

Case 3 Case 4

ight Particle diameter Irrigation rate
lation Interpolation Extrapolation

12 12
125, 146, 167, 188 42, 83, 125, 146, 167, 188 42, 83, 125, 146, 167, 188

10 10
0.10, 0.20 0.15
0.005 0.004, 0.005

9.00 8.33
1.14 1.38
8.78 7.77
0.78 0.84
1.8 (12) 1.5 (12)
1.9 (42) 1.8 (42)
1.6 (6) 2.0 (6)
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Fig. 13. Relative recovery of the soluble species as a function of time for different
irrigation rates. The lines are the analytical model. The simulated data for the
irrigation rates of 0.004 m3/m2 h (dots) and 0.005 m3/m2 h (+-markers) are fitted
and extrapolated to 0.006 m3/m2 h (x-markers).
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Fig. 12. Relative recovery of the soluble species as a function of time for different
particle diameters. The lines are the analytical model. The simulated data for the
particle diameters of 0.10 m (dots) and 0.20 m (x-markers) are fitted and interpo-
lated to 0.15 m (+-markers).

E.D. Gálvez et al. / Minerals Engineering 33 (2012) 46–53 53
prediction of the recovery for irrigation rates of 0.006 and 0.005 m3/
m2 h. The results for these simulations are shown in Figs. 11–13.
They show that, in spite of the small number of data points used
in the fitting process, the predictions at other irrigation rates and
even at other heap heights and particle diameters are satisfactory.
4. Discussion and conclusions

Two models are presented. One is a phenomenological model,
which considers the decrease of the heap height when the soluble
salts are dissolved. Another is an analytical model, which uses an
exponential expression for calculating the recovery. This model is
useful in an optimisation and sensitivity analysis in which an expli-
cit equation is needed and/or the model is solved a large number of
times. As indicated above, the main characteristic of the model is
that a small number of data points may be used to predict other
parameter values. Some differences are found between the phe-
nomenological and analytical models, but they are not significant.
However, the trends are clearly represented. The values used in the
simulations are arbitrary; however, this is not a significant matter
because the objective of the paper is to show the characteristics
and capabilities of both models.

An acceptable agreement is found between both models; how-
ever, as expected, some differences are also found between them,
mainly due to the particular characteristics of the models. The
main characteristics and advantages of the analytical model are
its simplicity and the small computational effort required. How-
ever, some difficulties are encountered in the simulations with this
model when the leaching process is controlled by one or two
parameters, e.g., when the dissolution reactions are determined
by the salt solubility. In contrast, the phenomenological model
can more accurately capture the interactions between the different
parameters; however, the computational time is longer.

Therefore, the applicability of these models is different. The
analytical model is useful in the optimisation of complex systems,
e.g., when several heaps are simultaneously leached and in other
post-modelling activities. This type of calculation requires a large
number of simulations; therefore, long computing times would
be required for using phenomenological models. In contrast, the
phenomenological models are useful in determining the influence
of different parameters on the leaching process. They are also use-
ful in the study of new processes because parameter fitting is gen-
erally not required.
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