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Abstract: The leaching of copper from industrial copper ore with 4.8 wt % chalcopyrite by acidified
nitrate with seawater based media was investigated. Water quality (pure water and seawater),
temperature (25–70 ◦C), reagent concentration, and nitrate type (sodium and potassium) were
studied variables. Leaching conditions were: 100 g ore/1 L solution; P80 of 62.5 µm; 400 rpm and
leaching time, varying between 3 and 7 days. Nitrates in sulfuric acid are known to be good oxidants
for sulfide ores. This study showed that up to 80 wt % copper could be extracted at 45 ◦C in 7 days.
In the absence of nitrate, under the same leaching conditions, only a 28 wt % copper extraction was
achievable. The extraction rate increased to 97.2 wt % when leach temperature was increased to 70 ◦C
in nitrate-chloride-acid media. The presence of chloride ions also increased the copper extraction rate.
The copper extraction achieved in seawater systems were higher than in water systems under the
same leaching conditions (increased by an average of 18 wt %). This effect can be attributable to the
contribution of chloride that increases proton (H+) activity.
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1. Introduction

Given that copper oxide minerals will probably be depleted in the near future and
hydrometallurgical plants could then be left unused, hydrometallurgical methods to process copper
sulfide represent an alternative use for solvent extraction and electro-winning plants.

Many researchers have argued that chloride ions are beneficial to leaching in the
hydrometallurgical processing of chalcopyrite [1–7], owing to the formation of soluble copper chloro
complexes [8,9]. Cupric and ferric ions have been tested as oxidants in chloride media [10–13] with
beneficial results. Mining companies in desert areas (e.g., Las Luces, Taltal, Chile) use seawater in
their operations because of limited access to freshwater [14–16]. The use of seawater in sulfuric acid
leaching is expected to increase the dissolution rate of the copper sulfide ores as seawater contains
approximately 19 g·L−1 chloride [17,18].

There are large reserves of nitrate (caliche) in Northern Chile [19–21]. Sodium nitrate is obtained
by caliche leaching with water and then crystallizing the leaching solution by cooling or evaporation.
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In the case of evaporation, discarded salts (tailings) from the solar pond still contains significant
amount (4.6 wt % NaNO3) of nitrate salts [22]. Such tailings can be used as oxidants in chalcopyrite
leaching. Habashi [23] proposed the use of nitric acid (HNO3) and indicated that in sulfide ore leaching
nitrate ions act as an oxidant by forming NO or NO2 gases and oxygen, from the decomposition of
HNO3. Other researchers [24,25] related the better performance of HNO3 as an oxidant due to its high
redox potential. In a system of CuFeS2, HNO3 and H2SO4, the reaction products are Cu2+, Fe3+, S0

and NO gas. This gas (NO) can be captured and oxidized with air and water to form HNO3. At higher
temperatures, sodium nitrate converts to nitric acid in presence of sulfuric acid (Equations (1)–(2);
Kazakov et al. [26]):

NaNO3 + H2SO4 = HNO3 + NaHSO4 (1)

2NaNO3 + H2SO4 = 2HNO3 + Na2SO4 (2)

There are several leaching studies [27–31] that use nitrogen species (e.g., NO3
−, nitrate, NO2

−,
nitrite, HNO3, nitric acid, or HNO2, nitrous acid, and NO2, nitrogen dioxide) as they increase the
oxidization capacity, and enhance kinetics and/or dissolution of ores. Nitrogen species catalyzed
(NSC) process uses nitric and sulfuric acid to leach sulfide ores at high temperature and pressure. This
process has been successfully used in the mining industry for pressure leaching of copper sulfides [32].
The main advantage of this process is faster reaction rates. Tsogtkhankhai et al. [33] studied leaching
copper concentrates using nitric acid, and determined the effects of nitric acid strength, liquid solid
ratio, time and temperature on the copper extraction rate. Depending on the activation energy,
temperature has a slight effect on the rate of copper extraction from chalcopyrite. The outset of
leaching is controlled by an external diffusion regime. As time passes, the dissolution reaction is
controlled by an internal diffusion regime due to the formation of a film around the particles. The same
authors [34] determined optimal sulfide dissolution conditions for the Cu-Fe-S-N-O-H system in nitric
acid at different temperatures (20 to 100 ◦C) using thermodynamic diagrams. They found that the
best conditions were: high initial oxidizing potentials (high concentration of nitric acid), pH lower
than 1 and high temperature. Arias [35] patented a hydrometallurgical process of copper sulfide
heap leaching using H2SO4 and NaNO3 at pH ≤ 2, with a sulfide ore/nitrate ratio (by weight) of 1:1.
Sodium nitrate was mixed with sulfuric acid and water. Prater and Queneau [36] patented a process for
dissolving sulfide ores (copper, iron, cobalt, nickel, silver) using nitric acid which is continuously added
during leaching. Iron (in the form of hydrogen jarosite) and sulfur compounds were precipitated; these
products are highly filterable and are subsequently removed. It is mentioned that the formation of
jarosites, which is followed by drop of pH, may cause losses of valuable ions from solution as a result
of co-precipitation [37].

Leaching of copper ores in sulfuric acid with sodium nitrate/nitrite solutions resulted in copper
extraction rates of 80–99 wt % [28,29]. Vračar et al. [30] leached Cu2S at different temperatures, NaNO3

and H2SO4 concentrations, stirring speeds and solid-liquid ratios. The authors determined that Cu2S
was leached in two stages, forming CuS, followed by elemental S, according to X-ray diffraction (XRD)
analysis of leaching residues. The activation energy for the process was 60 kJ·mol−1. Ore leaching was
a first order reaction and a second order reaction with respect to NaNO3 and H2SO4 concentrations,
respectively. Sokić et al. [28] leached a chalcopyrite concentrate and studied the effect of different
temperatures, particle sizes, concentrations of NaNO3 and H2SO4 and stirring speeds. The authors
proposed the following reactions to explain the dissolution of chalcopyrite in acid-nitrate media
(Equations (3)–(5)). These reactions are thermodynamically viable at 25 ◦C and atmospheric pressure
due to the negative value of the Gibbs energy:

CuFeS2 + 5NaNO3 + 5H2SO4 = CuSO4 +
1
2 Fe2(SO4)3 +

5
2 Na2SO4 + 2S + 5NO2 + 5H2O ∆G25◦C = −422.7 kJ·mol−1 (3)

CuFeS2 + 4NaNO3 + 4H2SO4 = CuSO4 + FeSO4 + 2Na2SO4 + 2S + 4NO2 + 4H2O ∆G25◦C = −352.3 kJ·mol−1 (4)

FeSO4 +
1
3 NaNO3 +

2
3 H2SO4 = 1

2 Fe2(SO4)3 +
1
6 Na2SO4 +

1
3 NO + 2

3 H2O ∆G25◦C = −65.1 kJ·mol−1 (5)
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The authors found that the modeled kinetics of the reaction is dominated by a chemical surface
reaction, followed by diffusion in the product layer with an activation energy of 83 kJ·mol−1.
The residues produced were unreacted chalcopyrite and elemental sulfur. Gok and Anderson [29]
leached chalcopyrite using an acidic solution containing a nitrite salt (Equation (6)). They obtained
a 5 wt % increase in copper extraction rate by using nitrite instead of nitrate. The overall copper
extraction rate was positively affected by the system temperature and the newly formed elemental
sulfur in the residue.

CuFeS2 + 8NaNO2 + 6H2SO4 = CuSO4 + FeSO4 + 4Na2SO4 + 2S + 2NO2 + 6NO + 6H2O ∆G25◦C = −1031.8 kJ·mol−1 (6)

This study considers the use of nitrate instead of nitrite because Chile has an industry based in
nitrate production. Moreover, nitrite is more expensive than nitrate.

Shiers et al. [38] carried out leaching tests using nitrate as an oxidant in chalcopyrite concentrate
and ore at 50 ◦C. The authors determined the effect of nitrate, ferric nitrate, ferric chloride and ferric
sulfate on copper extraction. A mixed chloride-nitrate system was favorable for extracting copper
from chalcopyrite while the presence of ferric chloride was also beneficial.

However, the use of nitrate as an oxidant in an industrial process could be a problem in the solvent
extraction stage (SX) due to the degradation of oxime-type extractants by nitration (nitration is the
degradation of organic compounds caused by the presence of high nitrate concentration in pregnant
leaching solution, PLS) [39–41]. Nowadays, chemical industries have developed nitration resistant
reagents to solve this problem [42–44].

In this study, seawater and nitrate salts (NaNO3, KNO3) were used to investigate the acid
dissolution of commercial copper ore that contains 4.8 wt % chalcopyrite (1.6 wt % Cu). The effect of
different physical and chemical conditions and variables were studied, including temperature, sulfuric
acid and nitrate concentrations, nitrate sources, leaching time and water quality.

2. Materials and Methods

2.1. Ore Sample

In this study, an ore from the Atacama Region, Chile was used. Table 1 provides the mineralogical
and chemical composition of the ore sample.

Table 1. Mineralogy and chemical composition of the ore sample.

Mineralogy Chemical Analysis

Minerals (wt %) Element (wt %)

Magnetite (Fe3O4) 36.7 Iron (Fe) 33.6
Quartz (SiO2) 17.1 Silicon (Si) 10.9

Plagioclase ((Ca,Na)(Al,Si)AlSi2O8) 9.1 Calcium (Ca) 4.1
Pyrite (FeS2) 8.1 Sulphur (S) 3.8

Chalcopyrite (CuFeS2) 4.8 Aluminium (Al) 2.8
Calcite (CaCO3) 4.6 Sodium (Na) 1.8

Kaolinite (Al4(Si4O10)(OH)8) 4.3 Copper (Cu) * 1.6
Garnet (Ca3Fe2Si3O12) 3.7 Magnesium (Mg) 0.9

Actinolite (Ca2(Mg,Fe)2.5Si8O22(OH)2) 3.5 Manganese (Mn) 0.6
Amphibole (NaCa2(Mg,Fe,Al)5(Si,Al)8O22(OH)2) 3.5 Potassium (K) 0.6

Epidote (Ca2Al2FeSi3O12(OH)) 2.6 Cobalt (Co) 0.4
Sericite (KAl2(AlSi3O10)(OH)2) ≤1.0 Chromium (Cr) 0.1

Chlorite ((Mg,Fe)3(AlSi)4O10(OH)2(Mg,Fe)3(OH)6) ≤1.0 Nickel (Ni) 0.1
Zinc (Zn) <0.1

Molybdenum (Mo) <0.1
Silver (Ag) <0.1

* Chemical analysis by decomposing the ore in a nitric-perchloric acid solution and atomic absorption
spectrometry (AAS).
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The mineral characterization was carried out by semi-quantitative X-ray diffraction
(Siemens/Bruker, Semi-QXRD, model D5000, Germany). The mineralogical data show that
chalcopyrite is the only copper mineral present in the ore. Chemical analysis was performed by
inductively coupled plasma atomic emission spectroscopy (ICP-AES, ICPE-9000, Shimadzu, Tokyo,
Japan). The chemical analysis by atomic absorption spectrometry (AAS, Perkin-Elmer 2380, Perkin
Elmer, Wellesley, MA, USA) measured the copper grade as 1.6 wt %. The particle size of the sample
(P80) in all tests was 62.5 µm, which was determined using a Microtrac Particle Analyzer (Microtrac
S3500, Microtrac, Montgomeryville, PA, USA).

2.2. Reagents

Analytical grade H2SO4, NaNO3, KNO3 and NaCl were used in all leaching tests. Distilled water
(referred to as “water” in the text) and seawater, obtained from San Jorge Bay, Antofagasta, Chile,
were used to prepare dilute sulfuric acid. The seawater was filtered using quartz sand (50 µm) and
a polyethylene membrane (1 µm). The seawater composition is shown in Table 2. One test used a
synthetic saline solution composed of distilled water and 35 g·L−1 NaCl. That value was chosen
because the salinity of seawater is 3.5%, so all salinity of seawater was considered as NaCl.

Table 2. Composition of seawater obtained from San Jorge Bay, Antofagasta, Chile.

Chemical
Method ICP-AES AAS Volumetric

Analysis
Gravimetric

Analysis

Ionic Species Na+ Mg2+ Ca2+ K+ B3+ Cu2+ NO3
− Cl− HCO3

− SO4
2−

mg·L−1 9480 1190 386 374 4.6 0.07 2.05 18,765 142 2771

2.3. Experimental Procedure

The leaching tests used 2 L jacketed glass reactors equipped with lids to prevent evaporative loss
(the reactors are not hermetically sealed). Temperature was controlled by a thermostatic bath. Stirring
was mechanical at 400 rpm, which provided stable suspension. The solid/liquid ratio used for all
tests was 100 g ore in 1 L of solution. 1 L of leach solution was prepared by adding sodium nitrate
(solid) and sulfuric acid to seawater or water. The tests were performed separately using both seawater
and water. The stirring was periodically interrupted to collect 10 mL samples of supernatant solution
from the reactors to analyze the copper content using AAS method. The copper extraction over time
was calculated by dividing the copper concentration in the solution at time t and the initial copper
concentration (1.6 wt %). The evaporation loss and the volume of samples removed during the tests
are considered in calculating copper extraction (loss of mass). The redox potential (ORP) and pH were
monitored during the leaching time. ORP was measured with a redox electrode (Ag/AgCl reference
electrode with 3.5 M KCl as electrolyte) and pH was measured with a glass membrane electrode
calibrated to buffers at pH 1 and pH 4. At the end of the leaching time, the pulp was filtered and
washed with distilled water and dried at 60 ◦C. The leaching residues were characterized (Section 2.4).
The total copper extracted from solid residues were compared with the leached copper extractions
with an average standard deviation of ±2%.

The performed leaching tests were summarized in Table 3. The variables studied were: sulfuric
acid concentration (0.25, 0.5 and 1 M), sodium nitrate concentration (0, 0.25, 0.5 and 1 M), temperature
(25, 30, 35, 40, 45 and 70 ◦C), nitrate sources (KNO3 and NaNO3), water type (water, seawater and
saline solution) and leaching time (3, 5 and 7 days).

In test 14, a synthetic saline solution was used in the preparation of a H2SO4 (1 M) + NaNO3

(1 M) leach liquor. The objective of the test was to determine whether NaCl is the only component of
seawater that aids higher copper extraction.
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Table 3. Experimental conditions used in chalcopyrite leaching tests

No. H2SO4 (M) NaNO3 (M) Water Type T (◦C) t (Days) Final Cu Extraction (wt %)

1
1.0 1.0 seawater 45 7 80.2
1.0 1.0 water 45 7 63.9

2
1.0 0.0 seawater 45 7 27.9
1.0 0.0 water 45 7 14.8

3
1.0 1.0 seawater 45 3 78.8
1.0 1.0 water 45 3 61.0

4
1.0 1.0 seawater 40 3 65.3
1.0 1.0 water 40 3 45.6

5
1.0 1.0 seawater 35 3 62.4
1.0 1.0 water 35 3 37.2

6
1.0 1.0 seawater 30 3 57.1
1.0 1.0 water 30 3 35.9

7
0.5 1.0 seawater 45 3 66.5
0.5 1.0 water 45 3 49.4

8
0.25 1.0 seawater 45 3 52.6
0.25 1.0 water 45 3 42.1

9
1.0 0.5 seawater 45 3 77.3
1.0 0.5 water 45 3 47.4

10
1.0 0.25 seawater 45 3 68.6
1.0 0.25 water 45 3 43.1

11
1.0 1.0 seawater 45 5 79.3
1.0 1.0 water 45 5 62.9

12
0.5 0.5 seawater 45 5 61.2
0.5 0.5 water 45 5 47.7

13
0.5 0.5 * seawater 45 5 58.3
0.5 0.5 * water 45 5 49.1

14 1.0 1.0 saline
solution 45 5 75.7

15
1.0 1.0 seawater 70 3 97.2
1.0 1.0 water 70 3 83.2

16
1.0 1.0 seawater 25 3 31.8
1.0 1.0 water 25 3 11.0

* 0.5 M as KNO3.

2.4. Characterization of Ore Residues

The solid residues were characterized by AAS, optical microscopy with reflected light,
scanning electron microscopy (SEM-EDX, JEOL 6260 LV, Tokyo, Japan) and semi-quantitative XRD
(QXRD) methods.

3. Results and Discussion

3.1. Effect of Sodium Nitrate and Concentrations

Figure 1 shows copper extraction from the leach liquors using H2SO4 (1 M) with and without
NaNO3 in seawater and water-based media (tests 1 and 2 in Table 3).

It can be seen that the addition of NaNO3 (1 M) to systems with H2SO4 (1 M), increased the
copper extraction from 27.9 to 80.2% in seawater-based media and from 14.8 to 63.9% in water- based
media. This improvement was related to the oxidizing potential of nitrate ions. The use of seawater
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clearly had a positive effect on these two sets of tests, yielding higher copper extraction rates than with
water. Copper extraction in seawater reached its maximum at about 96 h (4 days).Minerals 2018, 8, x FOR PEER REVIEW  6 of 16 
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Figure 1. Copper extraction in the leach liquors using H2SO4 (1 M) + NaNO3 (0 or 1 M) in seawater
and water based media (at 45 ◦C and 7 days).

Figure 2a shows that a concentration of 0.5 M of sodium nitrate in seawater was sufficient to
achieve a reasonably good level of copper extraction (77.3%) in 3 days. For the water system, a much
higher concentration of nitrate (1 M) was needed to extract only 60.9% of copper in the same period
(Figure 2b). This indicates that nitrate performs better with chloride ions during chalcopyrite leaching.
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Figure 2. Effect of sodium nitrate concentration on copper extraction using H2SO4 (1 M), 3 days of
leaching and 45 ◦C: (a) in seawater and (b) in water.

3.2. Effect of the Nitrate Source

Figure 3 shows the effect of the type of nitrate. Similar copper extraction rates were obtained
when NaNO3 or KNO3 was used. Copper extraction reached 60% in seawater systems and 48% in
water systems (0.5 M H2SO4) in 5 days. Thus, the type of nitrate (NaNO3 or KNO3) does not affect
copper extraction, which is consistent with Shiers et al. [38].
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3.3. Effect of Sulfuric Acid Concentration

Figure 4a,b show the influence of sulfuric acid concentration. The highest copper extraction rate
was obtained at higher concentrations of acid in seawater and water systems. The results indicate



Minerals 2018, 8, 238 8 of 16

that the oxidation power of nitrate ions increases with increased in sulfuric acid concentrations. This
observation is in good agreement with the findings of Sokić et al. [28]. In this study, copper extraction
increased by 50% and 45% when the sulfuric acid concentration increased from 0.25 to 1.0 M in seawater
and water systems, respectively.
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Figure 4. Effect of sulfuric acid concentration on copper extraction using NaNO3 (1 M), 3 days of
leaching and 45 ◦C: (a) seawater and (b) water.

As Figure 5 shows, copper extraction using 0.5 M of H2SO4 in a seawater-based media is similar
to that with 1 M of H2SO4 in a water-based media. The same behavior is observed in the kinetic curves
of copper extraction using 0.25 M of H2SO4 in seawater and 0.5 M of H2SO4 in water. This confirms
that chloride ions from seawater increase the acid activity of the systems. Puvvada et al. [45] and
Senanayake [46] obtained similar results. These authors indicated that the presence of salts such as
NaCl, CaCl2 or MgCl2 increase acid activity. This shows that a lower acid concentration can be used
when seawater is present in the system.
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3.4. Redox Potential and pH

Figure 6 shows the copper extraction rates and redox potential values obtained during the tests
at different concentrations of reagents (1 and 0.5 M of H2SO4 and NaNO3). Because of the high acid
concentrations (1 and 0.5 M) used in the tests, all the pH values were < 1. The redox potential (ORP)
ranged from 742 mV to 793 mV in seawater and from 739 mV to 789 mV in water when 1 M of sulfuric
acid and sodium nitrate were used. When 0.5 M was used, the range of redox potential was 701 mV
to 738 mV in seawater and 696 mV to 729 mV in water. In both cases, the redox potential was higher
in the seawater system than in water system. This indicates that copper leaching is more effective at
higher redox potentials and in a strongly acid medium with seawater.Minerals 2018, 8, x FOR PEER REVIEW  10 of 16 
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3.5. Effect of Temperature

Figure 7a,b show the effect of temperature. The highest copper extraction rate of 97.2% was
obtained at 70 ◦C after 3 days of leaching in a seawater media. This high rate of copper extraction was
due to the presence of chloride in solution, higher acid and nitrate content, and higher temperature.
The results obtained of the effect of the temperature are in agreement with the results reported in the
literature [28,30].

Copper extraction was higher in the seawater-based media than in the water-based media
independent of temperature. The increase in temperature from 25 to 70 ◦C resulted in an increase in
the copper extraction rate from ≈31% to ≈97% when seawater was used.Minerals 2018, 8, x FOR PEER REVIEW  11 of 16 
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3.6. Effect of Synthetic Saline Solution

Figure 8 compares the kinetic curves of copper extraction in seawater and a synthetic saline
solution. The kinetics curves in Figure 8 show that the two extraction rates are similar. The small
variations may be related to the presence of SO4

2− ions in the seawater. Other ions in seawater, such
as calcium, potassium, magnesium, do not contribute significantly to leaching under the conditions in
this work. Figure 8 shows that chloride ions, present in both solvents, helped in the leaching process.Minerals 2018, 8, x FOR PEER REVIEW  12 of 16 
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3.7. Characterization of Ore and Residue Samples

The residue characterization (test 11) confirms that chalcopyrite was significantly leached in the
seawater media. Covellite was found in small quantities, 1% and 3%, in the solid residues of the
leaching test in the seawater and water media, respectively (Figure 9). It is supposed that covellite in
the solid residue is formed as an intermediate product during chalcopyrite dissolution.

The formation of elemental sulfur as a product of chalcopyrite leaching in both seawater and
water-based media was confirmed by SEM-EDS analysis (red region, Figure 10).
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3.8. Thermodynamic and Chemical Reactions

Equations (7)–(10) are chemical reactions proposed for the system CuFeS2-NO3
−-H+-Cl−. In the

literature, the system CuFeS2-NO3
−-H+ was analyzed and respective chemical reactions were

provided [28,47], but these studies did not include the presence of chloride ions.

6CuFeS2 + 10NO−
3 + 40H+ + 12Cl− = 6CuCl2 + 6Fe3+ + 12S + 10NO + 20H2O (7)

6CuFeS2 + 10NO−
3 + 40H+ + 6Cl− = 6CuCl+ + 6Fe3+ + 12S + 10NO + 20H2O (8)

3CuFeS2 + 15NO−
3 + 30H+ + 6Cl− = 3CuCl2 + 3Fe3+ + 6S + 15NO2 + 15H2O (9)

3CuFeS2 + 15NO−
3 + 30H+ + 3Cl− = 3CuCl+ + 3Fe3+ + 6S + 15NO2 + 15H2O (10)

The presence of covellite in the leached residue can be explained by Equations (11) and (12):

2CuFeS2 + 8NO−
3 + 16H+ = Cu2+ + CuS + 2Fe3+ + 3S + 8NO2 + 8H2O (11)

CuS + 2NO−
3 + 4H+ = Cu2+ + S + 2NO2 + 2H2O (12)

These equations have negative Gibbs energy (∆G) indicating their thermodynamic viability at the
temperatures used in this work (See Table 4).

Table 4. Gibbs energy (∆G) value at different temperature

No. ∆G25 ◦C (kJ·mol−1) ∆G70 ◦C (kJ·mol−1)

(7) −1195.8 −1205.8
(8) −1351.5 −1338.8
(9) −340.0 −413.6
(10) −417.9 −480.2
(11) −245.7 −274.8
(12) −28.5 −38.2

4. Conclusions

In this study, leaching of chalcopyrite ore with 1.6 wt % Cu was investigated using a
nitrate-acid-seawater system. A higher rate of copper extraction was obtained in an acid nitrate
media when chloride ions were present in the leaching tests. The highest copper extraction rate of
97.2% was obtained at 70 ◦C with high sulfuric acid (1 M) and sodium nitrate (1 M) concentrations.

The addition of both nitrate types (NaNO3 or KNO3) to sulfuric acid in seawater or water-based
media provided similar levels of copper extraction. The changes in the cation types did not affect
copper extraction under the studied conditions.

Without chloride, in the form of seawater or synthetic brine, the nitrate system requires a higher
acid concentration to extract the same amount of copper.

The residue characterization showed that sulfur formed during dissolution.
This study presents an alternative method of leaching chalcopyrite ores using seawater and/or

brine with nitrate ions at moderate temperatures (45 ◦C). The main disadvantage of this method is the
production of NOx gases that should be controlled in industrial leaching systems.

Proposals for future work include the use of discarded brines (liquid waste with high
concentration of chloride ions) from reverse osmosis plants and discarded salts from caliche industry,
as sources of oxidants and chloride media during chalcopyrite leaching.
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